Answer:
K will give up an electron more easily than Br.
Explanation:
Electronegativity of an element is a property that combines the ability of its atom to lose and gain electrons.
The lower the electronegativity value, the more electropositive an element is and the more readily it loses electrons.
From the data given, we see that Br has an E.N value of 3.0 and K has an E.N value of 0.82.
Therefore, Br is highly electronegative and it is able to attract electrons to itself whereas K has a low E.N value. K will give up electrons more readily.
Lookinf at other information in the table, the larger atomic radius and lower ionizaton energy of K are all pointers to how readily it would be able to lose electrons.
We can conclude that K is even a metal.
When you have a chemical reaction, it means something goes wrong with your chemicals.
if you have 1mol of NO. how many molecules of NO are there
Answer:
6.02 x 10²³ molecules
Explanation:
Given parameters:
Number of moles of NO = 1 mole
Unknown:
Number of molecules in NO;
Solution:
A mole of compound contains the Avogadro's number of particles.
1 mole of a substance contains 6.02 x 10²³ molecules
So, 1 mole of NO contained 6.02 x 10²³ molecules
Answer:
0.143 g of KCl.
Explanation:
Equation of the reaction:
AgNO3(aq) + KCl(aq) --> AgCl(s) + KNO3(aq)
Molar concentration = mass/volume
= 0.16 * 0.012
= 0.00192 mol AgNO3.
By stoichiometry, 1 mole of AgNO3 reacts with 1 mole of KCl to form a precipitate.
Number of moles of KCl = 0.00192 mol.
Molar mass of KCl = 39 + 35.5
= 74.5 g/mol
Mass = molar mass * number of moles
= 74.5 * 0.00192
= 0.143 g of KCl.
Answer:
36.92 mg of oxygen required for bio-degradation.
Explanation:

Mass of benzene = 30 mg = 0.03 g (1000 mg = 1 g )
Moles benzene =
According to reaction 5 moles of benzene reacts with 15 moles of oxygen gas.
Then 0.0003846 mol of benzene will react with:
of oxygen gas
Mass of 0.0011538 moles of oxygen gas:
0.0011538 mol × 32 g/mol = 0.03692 g = 36.92 mg
36.92 mg of oxygen required for bio-degradation.