Cells will not able to produce proteins by translation as it's happens in ribosomes
What happens in the artificial transmutation is that the nucleous is bombarded with high energy particles which we can describe as kinetic energy and the idea for them is to induce what we call transmutation. Also what happens is that the high energy particles are accelerated. One of the examples is when nitrogen is transformed into hydrogen by combining its nucleous with an alpha particle
Answer:
It causes light to slow down significantly
Explanation:
The index of refraction of a substance describes the speed of light in that substance, as a ratio of the speed of light in vacuum to its speed in that substance.
just search it up and there is your answer
Answer
solubility product = 3.18x 10^-7
Explanation:
We were given the pressure in torr then we need to convert to atm for consistency, ten we have
21torr/760= 0.0276315789 atm
21 Torr = .0276315789 atm
P = i M S T
M = P / iRT
Where p is osmotic pressure
T= temperature= 25C+ 273= 298K
for XY vanthoff factor i = 2
S = 0.0821 L-atm / mol K
M = .0276315789 atm / (2)(0.0821 L atm / K mole)(298 K)
M = 0.000564698046 mol/liters
solubility= 0.000564698046 mol/liters
Ksp = [X+][Y-]
Ksp = X^2
Ksp = [Sr^+2] * [SO4^-2]
Ksp = X^2
Ksp = (0.000564698046)^2
Ksp = 3.18883883 × 10-7
Ksp = 3.18x 10^-7
solubility product = 3.18x 10^-7
Therefore, the solubility product of this salt at 25 ∘C∘C is 3.18x 10^-7
Answer:
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Explanation:
Step 1: Data given
Mass of nitrogen gas (N2) = 13.4 grams
Molar mass of N2 = 28 g/mol
Molar mass of NH3 = 17.03 g/mol
Step 2: The balanced equation
N2 + 3H2 → 2NH3
Step 3: Calculate moles of N2
Moles N2 = Mass N2 / molar mass N2
Moles N2 = 13.4 grams / 28.00 g/mol
Moles N2 = 0.479 moles
Step 4: Calculate moles of NH3
For 1 mol N2 we need 3 moles H2 to produce 2 moles NH3
For 0.479 moles N2 we'll produce 2*0.479 = 0.958 moles
Step 5: Calculate mass of NH3
Mass of NH3 = moles NH3 * molar mass NH3
Mass NH3 = 0.958 moles * 17.03 g/mol
Mass NH3 = 16.3 grams
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia