If 1.2 L of solution contains 0.97 mol
then let 1 L of solution contain x mol
⇒ (1.2 L) x = (0.97 mol) (1 L)
x = (0.97 mol · L) ÷ (1.2 L)
x = 0.8083 mol
Thus the molarity of the Barium Chloride solution is 0.808 mol / L OR 0.808 mol/dm³.
Sodium(Na) is the limiting reagent.
<h3>What is Limiting reagent?</h3>
The reactant that is totally consumed during a reaction, or the limiting reagent, decides when the process comes to an end. The precise quantity of reactant required to react with another element may be estimated from the reaction stoichiometry.
How do you identify a limiting reagent?
The limiting reactant is the one that is consumed first and sets a limit on the quantity of product(s) that can be produced. Calculate how many moles of each reactant are present and contrast this ratio with the mole ratio of the reactants in the balanced chemical equation to get the limiting reactant.
Start by writing the balanced chemical equation that describes this reaction
Notice that the reaction consumes 2 moles of sodium metal for every 1 mole of chlorine gas that takes part in the reaction and produces 2 moles of sodium chloride.
now we can see that we have 3 moles of sodium and 3 moles of chlorine, according to question. so, we can say that sodium is the limiting reagent in the given situation.
to learn more about Limiting Reagent go to - brainly.com/question/14222359
#SPJ4
Balanced equation is
HBr + NaOH ----> NaBr + H2O
Using molar masses
80.912 g HBr reacts with 39.997 g of Naoh to give 18.007 g water
so 1 gram of NaOH reacts with 2.023 g of HBR
and 5.7 reacts with 11.531 g HBr so we have excess HBr in this reaction
Mass of water produced = (5.7 * 18.007 / 39.997 = 2.6 g to 2 sig figs
An occluded front forms when a warm air mass is caught between two cooler air masses.
Answer:
I don't have the number of cubes in each bag, but whichever bag had the most cubes would have the most kinetic energy as it falls