The answer is A i think if it’s wrong someone correct me
Explanation:
As
is a covalent compound because it is made up by the combination of two non-metal atoms. Atomic number of an iodine atom is 53 and it contains 7 valence electrons as it belongs to group 17 of the periodic table.
Therefore, sharing of electrons will take place when two iodine atoms chemically combine with each other leading to the formation of a covalent bonding.
Hence, weak forces like london dispersion forces will be present between a molecule of
.
The weak intermolecular forces which can arise either between nucleus and electrons or between electron-electron are known as dispersion forces. These forces are also known as London dispersion forces and these are temporary in nature.
thus, we can conclude that london dispersion force is the major attractive force that exists among different
molecules in the solid.
Answer:
- 278.85 J
Explanation:
Given that:
Pressure = 1.1 atm
The initial volume V₁ = 0.0 L
The final volume V₂ = 2.5 L
The work that takes place in a reaction at constant pressure can be expressed by using the equation:
W = P(V₂ - V₁ )
Since the volume of the gas is expanded from 0 to 2.5 L when 1.1 atm pressure is applied. Then, the work can be given by the expression:
W = - P(V₂ - V₁ )
W = -1.1 atm ( 2.5 - 0.0) L
W = -1.1 atm (2.5 L)
W = -2.75 atm L
Recall that:
1 atm L = 101.4 J
Therefore;
-2.75 atm L = ( -2.75 × 101.4 )J
= -278.85 J
Thus, the work required at the chemical reaction when the pressure applied is 1.1 atm = - 278.85 J
Answer:
a. CO2 and H20
Explanation:
Chemically, this combustion process consists of a reaction between methane and oxygen in the air. When this reaction takes place, the result is carbon dioxide (CO2), water (H2O), and a great deal of energy. The following reaction represents the combustion of methane:
CH4[g] + 2 O2[g] -> CO2[g] + 2 H2O[g] + energy
One molecule of methane, (the [g] referred to above means it is gaseous form), combined with two oxygen molecules, react to form a carbon dioxide molecule, and two water molecules usually given off as steam or water vapor during the reaction and energy.