Answer:

Explanation:
Here we can use energy conservation
As per energy conservation conditions we know that work done by external source is converted into kinetic energy of the disc
Now we have

now we know that work done is product of force and displacement
so here we have


now for moment of inertia of the disc we will have



now from above equation we will have


It is D because our eye lenses reflect the white light we see and it also reflects the light to a point to where we can see colors and objects clearly... Hope this helps out ^-^''
In addition to acceleration of gravity we experience centrifugal acceleration away from the axis of rotation of the earth. this additional acceleration has value ac = r w^2 where w = angular velocity and r is distance from your spot on earth to the earth's axis of rotation so r = R cos(l) where l = 60 deg is the lattitude and R the earth's radius and w = 1 / (24hr x 3600sec/hr)
<span>now you look up R and calculate ac then you combine the centrifugal acc. vector ac with the gravitational acceleration vector ag = G Me/R^2 to get effective ag' = ag -</span>
By raising a position of an object, Its potential energy increases.
Answer:
The increase in the internal energy of the system is 360 Joules.
Explanation:
Given that,
Heat supplied to a system, Q = 292 J
Work done on the system by its surroundings, W = 68 J
We need to find the increase in the internal energy of the system. It can be given by first law of thermodynamics. It is given by :

So, the increase in the internal energy of the system is 360 Joules. Hence, this is the required solution.