Answer:
the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal
Explanation:
initial veetical speed V₀y=0
Horizontal speed Vx = Vx₀= 3.80m/s
Vertical drop height= 3.90m
Let Vy = vertical speed when it got to the water downward.
g= 9.81m/s² = acceleration due to gravity
From kinematics equation of motion for vertical drop
Vy²= V₀y² +2 gh
Vy²= 0 + ( 2× 9.8 × 3.90)
Vy= √76.518
Vy=8.747457
Then we can calculate the velocity of the fish relative to the water when it hits the water using Resultant speed formula below
V= √Vy² + Vx²
V=√3.80² + 8.747457²
V=9.537m/s
The angle can also be calculated as
θ=tan⁻¹(Vy/Vx)
tan⁻¹( 8.747457/3.80)
=66.52⁰
the velocity of the fish relative to the water when it hits the water is 9.537m/s and 66.52⁰ below horizontal
Answer:
v = 10 [m/s]
Explanation:
The largest mass is that of 4 [kg], in this way the momentum can be calculated by means of the product of the mass by velocity.

where:
P = momentum [kg*m/s]
m = mass = 4 [kg]
v = velocity = 5 [m/s]
Now the momentum:
![P=4*5\\P=20[kg*m/s]](https://tex.z-dn.net/?f=P%3D4%2A5%5C%5CP%3D20%5Bkg%2Am%2Fs%5D)
This same momentum is equal for the other mass, in this way we can find the velocity.
![P=m*v\\20=2*v\\v=10[m/s]](https://tex.z-dn.net/?f=P%3Dm%2Av%5C%5C20%3D2%2Av%5C%5Cv%3D10%5Bm%2Fs%5D)
Answer:
e) 120m/s
Explanation:
When the ball reaches its highest point, its velocity becomes zero, meaning
.
where
is the initial velocity.
Solving for
we get
which is the time it takes the ball to reach the highest point.
Now, after the ball has reached its highest point, it turns around and falls downwards. After time
since it had reached the highest point, the ball has traveled downwards and the velocity
it has gained is
,
and we are told that this is twice the initial velocity
; therefore,

which gives

Thus, the total time taken to reach velocity
is


This
, we are told, is 36 seconds; therefore,

and solving for
we get:



which from the options given is choice e.
Answer:
reduced
Explanation:
The use of bearing surfaces that are themselves sacrificial, such as low shear materials, of which lead/copper journal bearings are an example
Answer:
820 nm
Explanation:
We are given that
Wavelength=



For first minimum therefore
m=0
We know that for destructive interference

Substitute the values



Hence, the distance between two slits that produces the first minimum=820 nm