let's recall the remainder theorem.
we know that (x-1) is a factor, that means x -1 = 0 or x = 1.
since we know that (x-1) is a factor, then dividing the polynomial by it will give us a remainder of 0, which correlates with saying that f(1) = 0, in this case, so we can simply plug in "1" as the argument, knowing it gives 0.
![f(x)=3x^3+kx-11\\\\[-0.35em]~\dotfill\\\\\stackrel{0}{f(1)}=3(1)^3+k(1)-11\implies \stackrel{f(1)}{0}=3+k-11\implies 0=-8+k\implies 8=k](https://tex.z-dn.net/?f=f%28x%29%3D3x%5E3%2Bkx-11%5C%5C%5C%5C%5B-0.35em%5D~%5Cdotfill%5C%5C%5C%5C%5Cstackrel%7B0%7D%7Bf%281%29%7D%3D3%281%29%5E3%2Bk%281%29-11%5Cimplies%20%5Cstackrel%7Bf%281%29%7D%7B0%7D%3D3%2Bk-11%5Cimplies%200%3D-8%2Bk%5Cimplies%208%3Dk)
Answer:
it is a
Step-by-step explanation:
because 11 +1 8n binary is qlways 100 bbecause 11 is in the 4th in the truth table of binary numbers and 100 is in the 5th so 11 + 1 = 4+1
100 = 5
pls mark it as the brainlyest answer
Answer:
Step-by-step explanation:

Hint:

Answer:
Large avocados should cost $ 1.83 or less to be a good deal.
Step-by-step explanation:
Since there are two types of avocado in the store, some small at $ 0.92 and others larger, to determine at what price large avocados would be a good deal, an equivalence must be established in this regard:
Thus, if two small avocados are equal to one large, buying two small avocados at $ 0.92 the total price would be $ 1.84. Therefore, any large avocado that sells for less than $ 1.84 would be a good deal. Thus, large avocados should cost $ 1.83 or less to be a good deal.
Answer:
m³n
Step-by-step explanation: