Answer: 0.4920238
Step-by-step explanation:
Given: z is a standard normal variable.
We know that probability of z lies lies between
two values a and b is given by :-
Pla<2Now, the probability that z lies between -2.41
and O is given by :-
P(-2.41 < 2 < 0) = P(=<0) - P(2< -2.41)
P(-2.41 < 2 < 0) = 0.5 - 0.0079762 = 0.4920238
[By using z-table for standard normal distribution]
Hence, the probability that z lies between -2.41
and 0 = 0.4920238
Answer:
3.60m
Step-by-step explanation:
In backwaters of Kerala, a boatman was throwing a boat with a long pole which has a length of 4.80m
The boatman put the pole into the water vertically, the part of the pole that was seen above the water level is 0.25m
The first step is to calculate the length of the pole that is seen above the water level
= 4.80 × 0.25
= 1.20m
Therefore the depth of the water at that point can be calculated as follows
=4.80m - 1.20m
= 3.60m
Hence the depth of the water at that point is 3.60m
Answer:
24/4= 6 pitchers
it takes four tea bags to make a pitcher of tea, so you divide 24 by 4 to see how many pitchers it takes
your answer is B
Answer:
Therefore the required rule for the given table is

Step-by-step explanation:
Given :
Table values are
x y
6 -12
7 -14
8 -16
9 -18
10 -20
To Find :
The rule for above result = ?
Solution:
The Required Rule for the above Table is

For first case
Put x = 6 in the rule we get
as shown in the table
For second case
Put x = 7 in the rule we get
as shown in the table
For third case
Put x = 8 in the rule we get
as shown in the table
For fourth case
Put x = 9 in the rule we get
as shown in the table
For fifth case
Put x = 10 in the rule we get
as shown in the table
Therefore the required rule for the given table is

Suppose that equation of parabola is
y =ax² + bx + c
Since parabola passes through the point (2,−15) then
−15 = 4a + 2b + c
Since parabola passes through the point (-5,-29), then
−29 = 25a − 5b + c
Since parabola passes through the point (−3,−5), then
−5 = 9a − 3b + c
Thus, we obtained following system:
4a + 2b + c = −15
25a − 5b + c = −29
9a − 3b + c = −5
Solving it we get that
a = −2, b = −4, c = 1
Thus, equation of parabola is
y = −2x²− 4x + 1
____________________
Rewriting in the form of
(x - h)² = 4p(y - k)
i) -2x² - 4x + 1 = y
ii) -3x² - 7x = y - 11
(-3x² and -7x are isolated)
iii) -3x² - 7x - 49/36 = y - 1 - 49/36
(Adding -49/36 to both sides to get perfect square on LHS)
iv) -3(x² + 7/3x + 49/36) = y - 3
(Taking out -3 common from LHS)
v) -3(x + 7/6)² = y - 445/36
vi) (x + 7/6)² = -⅓(y - 445/36)
(Shifting -⅓ to RHS)
vii) (x + 1)² = 4(-1/12)(y - 445/36)
(Rewriting in the form of 4(-1/12) ; This is 4p)
So, after rewriting the equation would be -
(x + 7/6)² = 4(-⅛)(y - 445/36)
__________________
I hope this is what you wanted.
Regards,
Divyanka♪
__________________