What is the variable?
~<em>the</em><em> </em><em>price</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>variable</em><em>.</em>
What happens to demand?
~It'll go down. Since the price of snow blowers will increase then the quantity demanded will go down.
Hope this helps- have a good day bro cya)
The boat is initially at equilibrium since it seems to start off at a constant speed of 5.5 m/s. If the wind applies a force of 950 N, then it is applying an acceleration <em>a</em> of
950 N = (2300 kg) <em>a</em>
<em>a</em> = (950 N) / (2300 kg)
<em>a</em> ≈ 0.413 m/s²
Take east to be positive and west to be negative, so that the boat has an initial velocity of -5.5 m/s. Then after 11.5 s, the boat will attain a velocity of
<em>v</em> = -5.5 m/s + <em>a</em> (11.5 s)
<em>v</em> = -0.75 m/s
which means the wind slows the boat down to a velocity of 0.75 m/s westward.
Answer:
2.72 m/s
Explanation:
In 3 meters a person running 0.5 m/s accelerates 1.2 m/s².
It means,
Distance, s = 3 m
Initial velocity, u = 0.5 m/s
Acceleration, a = 1.2 m/s²
We need to find the final velocity of the person. Using equation of motion to find it as follows :

So, the final velocity of the person is 2.72 m/s.
Answer:
34.6 m/s
Explanation:
From conservation of momentum, the sum of initial and final momentum are equal. Momentum is a product of mass and velocity. Initial mass will be 42.8+31.5+25.9=100.2 kg
Final mass will be 31.5+25.9=57.4 kg
From formula of momentum
M1v1=m2v2
Making v2 the subject of the formula then

Substitute 100.2 kg for M1, 19.8 m/s fkr v1 and 57.4 kg for m2 then
