The wire needs to be sauderwired to be connected back into place to get energy into column so it came function properly again!
The impact of the material
type with which the slope is made affects the acceleration. Acceleration will
be higher and smoother if the material of the slope surface is smoother as
opposed to a texture which is not smooth. Smoother surface allows more acceleration
because it will have less friction and resistance. Otherwise the friction will
slow the object down for example a grassy ground will have more friction than a
well maintained marble floor.
Answer:
The x-component and y-component of the velocity of the cruise ship relative to the patrol boat is -5.29 m/s and 0.18 m/s.
Explanation:
Given that,
Velocity of ship = 2.00 m/s due south
Velocity of boat = 5.60 m/s due north
Angle = 19.0°
We need to calculate the component
The velocity of the ship in term x and y coordinate


The velocity of the boat in term x and y coordinate
For x component,

Put the value into the formula


For y component,

Put the value into the formula


We need to calculate the x-component and y-component of the velocity of the cruise ship relative to the patrol boat
For x component,

Put the value into the formula


For y component,

Put the value into the formula


Hence, The x-component and y-component of the velocity of the cruise ship relative to the patrol boat is -5.29 m/s and 0.18 m/s.
data which is expressed in form of following way

here in above expression
= true value
= uncertainty in the value
now the relative uncertainty is given as

now by above formula we can say
a) 2.70 ± 0.05cm
here
True value = 2.70
uncertainty = 0.05
Relative uncertainty =
= 0.0185
b) 12.02 ± 0.08cm
here
True value = 12.02
uncertainty = 0.08
Relative uncertainty =
= 0.00665
To solve this problem it is necessary to apply the kinematic equations of angular motion.
Torque from the rotational movement is defined as

where
I = Moment of inertia
For a disk
Angular acceleration
The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

Where
Final and Initial Angular velocity
Angular acceleration
Angular displacement
Our values are given as






Using the expression of angular acceleration we can find the to then find the torque, that is,




With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so




Therefore the torque exerted on it is 