Answer:
12 ml
Explanation:
The initial volume in the cylinder is 20 ml
adding the rock adds volume to the cylinder
the new volume is 32 ml .....the increase in volume is the volume of the rock : 32 - 20 = 12 ml volume of rock
Answer:
w = 5832.372 Joules
Explanation:
Mass of water, m = 20 kg
The water was pulled up to a height of 35 meters, i.e. h = 35 m
It takes 14 minutes to pull up the water through the height, 35 m
speed = distance/ time = 35/14 = 2.5 m/min
The bucket's height, y = speed * time = 2.5t meters
6 kg of water drips out of the bucket throughout the 14 minutes
The rate at which the water drips drips out = (6/14) = 0.4286 kg/min
Mass of water that drips out in time, t = 0.4286t kg
The mass of water remaining = (20 - 0.4286t) kg
Change in Workdone, Δw = mgΔy
Δy = 2.5 Δt
Δw = mg * 2.5 Δt
dw = (20 - 0.4286t)g2.5 dt
integrating both sides
dw = (50g - 1.07gt)dt
where b = 0, a = 14
w = 50gt - 1.07g(t²)/2 g = 9.8 m/s²
w = 490t - 5.243t²
w = (490*14 - 5.243*14²) - (490*0 - 5.243*0²)
w = 6860 - 1027.628
w = 5832.372 Joules
The refractive index for glycerine is

, while for air it is

.
When the light travels from a medium with greater refractive index to a medium with lower refractive index, there is a critical angle over which there is no refraction, but all the light is reflected. This critical angle is given by:

where n1 and n2 are the refractive indices of the two mediums. If we susbtitute the refractive index of glycerine and air in the formula, we find the critical angle for this case:
When he didn't get answers to his ?s he would try to find the replies himself though research and study. <span />