The absolute value is defined as

So for example, if <em>x</em> = 3, then |<em>x</em>| = |3| = 3, since 3 is positive. On the other hand, if <em>x</em> = -5, then |<em>x</em>| = |-5| = -(-5) = 5, since -5 is negative. The absolute value is always positive.
For the inequality |7 + 8<em>x</em>| > 5, you consider the two cases where the argument to the absolute value (the expression you find inside the bars) is either positive or negative.
• If 7 + 8<em>x</em> ≥ 0, then |7 + 8<em>x</em>| = 7 + 8<em>x</em>, so that

• Otherwise, if 7 + 8<em>x</em> < 0, then |7 + 8<em>x</em>| = -(7 + 8<em>x</em>), so that

The solution to the inequality is the union of these two intervals.
Answer:
Answer to Suppose that IQ scores have a bell-shaped distribution with a mean of ... Question: Suppose That IQ Scores Have A Bell-shaped Distribution With A Mean Of 105 And A Standard Deviation Of 15. ... Please Do Not Round Your Answer. ... Using the empirical rule, what percentage of IQ scores are greater than 120?Step-by-step explanation:
Answer:
20
Step-by-step explanation:
Why? because 100$ in 5 days is he spent the same much each day then it's 20 because 20 x 5=100
20 x 1=20
20 x 2=40
20 x 3=60
20 x 4=80
20 x 5=100
Answer:
I would say Right, Isosceles.
Step-by-step explanation:
Answer:
y=t−1+ce
−t
where t=tanx.
Given, cos
2
x
dx
dy
+y=tanx
⇒
dx
dy
+ysec
2
x=tanxsec
2
x ....(1)
Here P=sec
2
x⇒∫PdP=∫sec
2
xdx=tanx
∴I.F.=e
tanx
Multiplying (1) by I.F. we get
e
tanx
dx
dy
+e
tanx
ysec
2
x=e
tanx
tanxsec
2
x
Integrating both sides, we get
ye
tanx
=∫e
tanx
.tanxsec
2
xdx
Put tanx=t⇒sec
2
xdx=dt
∴ye
t
=∫te
t
dt=e
t
(t−1)+c
⇒y=t−1+ce
−t
where t=tanx