Answer: you could only form 4 groups of 4, but for the people remaining you might either have 2 groups of 5 or 1 group of 2.
So exg
prime factorization is finding the prime number that will multiply to getthat tnumber
normally we exclude the number 1
so prime factor of 6=2 times 3
note:2*3 menas 2 times 3
so 891
it is odd so not divisible by 2
try 3
891/3=297
3*297=891
factor further
297
try 3
297/3=99
3*3*99=891
99
divide by 3
33
3*3*3*33
33
divide by 3
11
3*3*3*3*11
11 is prime so the prime factoization is
3*3*3*3*11 or 3^4*11
Answer:
3, 5, 7
Step-by-step explanation:
1st number: (2k+1)
2nd number: (2k+3)
3rd number: (2k+5), k∈Z
3*[(2k+1) + (2k+3)] = 3 + 3*(2k+5)
3*(4k+4)=3+6k+15
12k+12=18+6k
6k=6
k=1
1st number: (2k+1) = 3
2nd number: (2k+3)=5
3rd number: (2k+5)=7
De acuerdo con un sistema de ecuaciones, tiene-se que los números son 31 y 84.
----------------
- En el sistema de ecuaciones, tiene-se que los números son x e y.
- Suma de 115, o sea,

- <u>El número mayor es dos veces más 22 unidades que el otro</u>, o sea,

----------------
Primero se encuenta el número menor, <u>reemplazando la segunda ecuación en la primera:</u>





----------------
El número mayor es dado en <u>función de el menor</u>, o sea:

Los números son 31 y 84.
Otro problema resuelto por sistema de ecuaciones es dado en brainly.com/question/24637096
the Pythagorean Theoremproof of let ΔABC be a right triangle. and sinA=a/c, and cosA= b/ca opposite side of the angle Ab the adjacent side of the angle Aand c is the hypotenuswe know that sin²A +cos²A= (a/c)²+ (b/c) ², but sin²A +cos²A=1so, a²/c²+ b²/c ²=1 which implies a²+ b²=c² the answer is Transitive Property of Equality proof the right triangles BDC and CDA are siWe start with the original right triangle, now denoted ABC, and need only one additional construct - the altitude AD. The triangles ABC, DBA, and DAC are similar which leads to two ratios:AB/BC = BD/AB and AC/BC = DC/AC.Written another way these becomeAB·AB = BD·BC and AC·AC = DC·BCSumming up we getAB·AB + AC·AC= BD·BC + DC·BC = (BD+DC)·BC = BC·BC.so not in the proof is Transitive Property of Equality