Answer:
Therefore it will take 7.66 hours for 80% of the lead decay.
Explanation:
The differential equation for decay is


Integrating both sides
ln A= kt+c₁

[
]
The initial condition is A(0)= A₀,


.........(1)
Given that the
has half life of 3.3 hours.
For half life
putting this in equation (1)

[taking ln both sides,
]

⇒k= - 0.21
Now A₀= 1 gram, 80%=0.8
and A= (1-0.8)A₀ = (0.2×1) gram = 0.2 gram
Now putting the value of k,A and A₀in the equation (1)




⇒ t≈7.66
Therefore it will take 7.66 hours for 80% of the lead decay.
Answer:
pH = 13.09
Explanation:
Zn(OH)2 --> Zn+2 + 2OH- Ksp = 3X10^-15
Zn+2 + 4OH- --> Zn(OH)4-2 Kf = 2X10^15
K = Ksp X Kf
= 3*2*10^-15 * 10^15
= 6
Concentration of OH⁻ = 2[Ba(OH)₂] = 2 * 0.15 = 3 M
Zn(OH)₂ + 2OH⁻(aq) --> Zn(OH)₄²⁻(aq)
Initial: 0 0.3 0
Change: -2x +x
Equilibrium: 0.3 - 2x x
K = Zn(OH)₄²⁻/[OH⁻]²
6 = x/(0.3 - 2x)²
6 = x/(0.3 -2x)(0.3 -2x)
6(0.09 -1.2x + 4x²) = x
0.54 - 7.2x + 24x² = x
24x² - 8.2x + 0.54 = 0
Upon solving as quadratic equation, we obtain;
x = 0.089
Therefore,
Concentration of (OH⁻) = 0.3 - 2x
= 0.3 -(2*0.089)
= 0.122
pOH = -log[OH⁻]
= -log 0.122
= 0.91
pH = 14-0.91
= 13.09
22.7 liters
The molar volume of an ideal gas depends on the temperature and pressure. One mole of any ideal gas occupies 22.7 liters at 0 0C and 1 bar (STP).
Hope this helped
Given :
Volume , V = 500 mL .
Molarity , M = 0.5 M .
Molecular mass of NaCl is
.
To Find :
How many grams of NaCl is required .
Solution :
Let , NaCl required is x gram .
Molarity is given by :

Hence , this is the required solution.