Upon formation of an equation from a given pattern, we know how the variables in the patter are related. Using the equation, we can find the value of one of the missing variables if the rest are known and also predict the values of the pattern at given conditions.
An example:
y = 2x + 5
if we are to predict the value of y at x = 3, we simply substitute 3 into x
y = 2(3) + 5
= 11
        
                    
             
        
        
        
The initial statement is:    QS = SU   (1)
                                     QR = TU    (2)
  
We have to probe that:  RS = ST
  
  
Take the expression (1):                     QS       =   SU
We multiply both sides by R                (QS)R   =   (SU)R
  
  
But    (QS)R = S(QR)     Then:            S(QR)   =   (SU)R     (3)
  
From the expression (2):  QR = TU. Then, substituting it in to expression (3):
  
                                                        S(TU)   =   (SU)R     (4)
  
But  S(TU) = (ST)U  and (SU)R = (RS)U
  
Then, the expression (4) can be re-written as:
  
                                                       (ST)U    =    (RS)U
  
Eliminating U from both sides you have:     (ST) = (RS)    The proof is done.
 
 
        
             
        
        
        
Answer:
D. 63
Step-by-step explanation:
It has more than two factors. (composite)
 
        
                    
             
        
        
        
32%. Nensjajkaksksnakekdnsn. sorry I had to type extra letters to answer