Answer:
51 J
Explanation:
The air inside a bicycle tire pump has 27 joules of heat conducted away. By convention, when heat is released, it takes the negative sign, so Q = -27 J.
77.9 joules of work done are being done on the air inside a bicycle tire pump. By convention, when work is being done on the system, it takes the positive sign, so W = 77.9 J
We can calculate the change in the internal energy (ΔU) using the following expression.
ΔU = Q + W
ΔU = (-27 J) + 77.9 J
ΔU = 51 J
Answer:
Unbalanced
Explanation:
You need to have the same number of atoms on both sides for it to be balanced
1.03!! Very easy you welcome:)
This problem is providing us with the molality of a solution of calcium iodide as 0.01 m. So the most likely van't Hoff factor is required and theoretically found to be 3 due to the following:
<h3>Van't Hoff factor:</h3>
In chemistry, the correct characterization of solutions also imply the identification of the ions it will release in aqueous solution. For that reason, the van't Hoff factor gives us an idea of this number, according to the formula the solute has got.
In such a way, for calcium iodide, we write its ionization equation as shown below:

Assuming it is able to ionize due to the low molality, because if it was higher, then it won't ionize. Hence, since we have three moles of ion products, one Ca²⁺ and two I⁻, we can conclude the van't Hoff factor would be 3, although calculations may lead to a different, yet close result.
Learn more about the van't Hoff factor: brainly.com/question/23764376