Answer:
Explanation:
How many atoms are in a 3.5 g sample of sodium (Na)? In this example, multiply the grams of Na by the conversion factor 1 mol Na/ 22.98 g Na, with 22.98g being the molar mass of one mole of Na, which then allows cancelation of grams, leaving moles of Na.
It shows the type of atoms/elements in a substance
Different types of atoms have different emission spectrum - a concept supported by Bohr quantum theory - hence one is able to identify elements in a substance using a method called spectroscopy.
Explanation:
When an electron jumps from a low energy orbital to a higher energy orbital in an atom, it absorbs a specific wavelength of electromagnetic radiation (This is called absorption spectrum). Vice versa, if the same electron jumps from a higher to a lower energy orbital it releases the equivalent quantum energy in electromagnetic wave (This is called emission spectrum). Different types of atoms of different elements have a unique spectrum identifier.
Learn More:
Learn more about spectroscopy;
brainly.com/question/3822641
brainly.com/question/13435562
#LearnWithBrainly
Nitrous Acid.
Hyponitrous acid: H2N2O2
Nitric acid: HNO3
Pernitric acid: HNO
Answer:
The value of the missing equilibrium constant ( of the first equation) is 1.72
Explanation:
First equation: 2A + B ↔ A2B Kc = TO BE DETERMINED
⇒ The equilibrium expression for this equation is written as: [A2B]/[A]²[B]
Second equation: A2B + B ↔ A2B2 Kc= 16.4
⇒ The equilibrium expression is written as: [A2B2]/[A2B][B]
Third equation: 2A + 2B ↔ A2B2 Kc = 28.2
⇒ The equilibrium expression is written as: [A2B2]/ [A]²[B]²
If we add the first to the second equation
2A + B + B ↔ A2B2 the equilibrium constant Kc will be X(16.4)
But the sum of these 2 equations, is the same as the third equation ( 2A + 2B ↔ A2B2) with Kc = 28.2
So this means: 28.2 = X(16.4)
or X = 28.2/16.4
X = 1.72
with X = Kc of the first equation
The value of the missing equilibrium constant ( of the first equation) is 1.72