Answer:
The simplified expression for the fraction is ![\text {X} = \dfrac{ {k_3 \times cM} }{k_1 +k_2 + k_3 }](https://tex.z-dn.net/?f=%5Ctext%20%7BX%7D%20%3D%20%20%20%20%5Cdfrac%7B%20%20%7Bk_3%20%20%5Ctimes%20cM%7D%20%7D%7Bk_1%20%2Bk_2%20%2B%20k_3%20%7D)
Explanation:
From the given information:
O3* → O3 (1) fluorescence
O + O2 (2) decomposition
O3* + M → O3 + M (3) deactivation
The rate of fluorescence = rate of constant (k₁) × Concentration of reactant (cO)
The rate of decomposition is = k₂ × cO
The rate of deactivation = k₃ × cO × cM
where cM is the concentration of the inert molecule
The fraction (X) of ozone molecules undergoing deactivation in terms of the rate constants can be expressed by using the formula:
![\text {X} = \dfrac{ \text {rate of deactivation} }{ \text {(rate of fluorescence) +(rate of decomposition) + (rate of deactivation) } } }](https://tex.z-dn.net/?f=%5Ctext%20%7BX%7D%20%3D%20%20%20%20%5Cdfrac%7B%20%5Ctext%20%7Brate%20of%20deactivation%7D%20%7D%7B%20%5Ctext%20%7B%28rate%20of%20fluorescence%29%20%2B%28rate%20of%20decomposition%29%20%2B%20%28rate%20of%20deactivation%29%20%7D%20%20%7D%20%7D)
![\text {X} = \dfrac{ {k_3 \times cO \times cM} }{ {(k_1 \times cO) +(k_2 \times cO) + (k_3 \times cO \times cM) } }](https://tex.z-dn.net/?f=%5Ctext%20%7BX%7D%20%3D%20%20%20%20%5Cdfrac%7B%20%20%7Bk_3%20%5Ctimes%20cO%20%5Ctimes%20cM%7D%20%7D%7B%20%20%7B%28k_1%20%5Ctimes%20cO%29%20%2B%28k_2%20%5Ctimes%20cO%29%20%2B%20%28k_3%20%5Ctimes%20cO%20%5Ctimes%20cM%29%20%7D%20%20%7D)
![\text {X} = \dfrac{ {k_3 \times cO \times cM} }{cO (k_1 +k_2 + k_3 \times cM) }](https://tex.z-dn.net/?f=%5Ctext%20%7BX%7D%20%3D%20%20%20%20%5Cdfrac%7B%20%20%7Bk_3%20%5Ctimes%20cO%20%5Ctimes%20cM%7D%20%7D%7BcO%20%28k_1%20%2Bk_2%20%2B%20k_3%20%20%5Ctimes%20cM%29%20%7D)
since cM is the concentration of the inert molecule
Answer: 1.36 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
![Molarity=\frac{n\times 1000}{V_s}](https://tex.z-dn.net/?f=Molarity%3D%5Cfrac%7Bn%5Ctimes%201000%7D%7BV_s%7D)
where,
n = moles of solute
To calculate the moles, we use the equation:
moles of solute= ![\frac{\text {given mass}}{\text {molar mass}}=\frac{2.06g}{171g/mol}=0.0120moles](https://tex.z-dn.net/?f=%5Cfrac%7B%5Ctext%20%7Bgiven%20mass%7D%7D%7B%5Ctext%20%7Bmolar%20mass%7D%7D%3D%5Cfrac%7B2.06g%7D%7B171g%2Fmol%7D%3D0.0120moles)
![Molarity=\frac{0.0120\times 1000}{32.9}=0.364M](https://tex.z-dn.net/?f=Molarity%3D%5Cfrac%7B0.0120%5Ctimes%201000%7D%7B32.9%7D%3D0.364M)
The balanced reaction between barium hydroxide and perchloric acid:
![2HCIO_4+Ba(OH_)2\rightarrow BaCIO_4+2H_2O](https://tex.z-dn.net/?f=2HCIO_4%2BBa%28OH_%292%5Crightarrow%20BaCIO_4%2B2H_2O)
To calculate the concentration of acid, we use the equation given by neutralization reaction:
![n_1M_1V_1=n_2M_2V_2](https://tex.z-dn.net/?f=n_1M_1V_1%3Dn_2M_2V_2)
where,
are the n-factor, molarity and volume of acid which is ![HClO_4](https://tex.z-dn.net/?f=HClO_4)
are the n-factor, molarity and volume of base which is ![Ba(OH)_2](https://tex.z-dn.net/?f=Ba%28OH%29_2)
We are given:
![n_1=1\\M_1=?\\V_1=8.50mL\\n_2=2\\M_2=0.364M\\V_2=15.9mL](https://tex.z-dn.net/?f=n_1%3D1%5C%5CM_1%3D%3F%5C%5CV_1%3D8.50mL%5C%5Cn_2%3D2%5C%5CM_2%3D0.364M%5C%5CV_2%3D15.9mL)
Putting values in above equation, we get:
![1\times M_1\times 8.50=2\times 0.364\times 15.9\\\\M_1=1.36M](https://tex.z-dn.net/?f=1%5Ctimes%20M_1%5Ctimes%208.50%3D2%5Ctimes%200.364%5Ctimes%2015.9%5C%5C%5C%5CM_1%3D1.36M)
Thus the concentration of the acid is 1.36 M
Answer:
The atomic number on the Periodic Table identifies the number of protons in any atom of that element. Copper, atomic number 29, has 29 protons. Finding the atomic number of an element reveals the number of protons.
To find the number of neutrons in the atom, subtract the atomic number from the atomic mass.
Answer:
A
Explanation:
The answer to this question is A. Both ripening and spoiling are chemical reactions.
Spoiling is a chemical reaction because spoiled food has bad smell and taste and it changes colour too.
Ripening of fruits is a chemical change. For example the colour could change as well as the texture.
so basically
some fuels have an impurity in them which is sulfur.
When the fuel undergoes combustion, the sulfur reacts with oxygen in the air to form sulfur dioxide.
the sulfur dioxide reacts with water vapour in the air to form sulfurous acid, which is a type of acid rain.
Also
the high pressures inside a car engine may cause nitrogen and oxygen in the air to react and form oxides of nitrogen. the most common compounds formed inside car engines are NO (nitrogen oxide) and NO2 (nitrogen dioxide)