Answer:
128 grams of sulfur dioxide are produced.
Explanation:

Moles of HCl = 4 moles
According to reaction, 2 moles of HCl gives 1 mole of sulfur dioxide gas.
Then 4 moles of HCl will give:
of sulfur dioxide gas.
Mass of sulfur dioxide gas = 2 mol × 64 g/mol = 128 g
128 grams of sulfur dioxide are produced.
D. there would be a proportional increase in pressure to temperature
Answer:
20.2 amu.
Explanation:
Let A represent isotope ²⁰X
Let B represent isotope ²²X
From the question given above, the following data were obtained:
For Isotope A (²⁰X):
Mass of A = 20
Abundance (A%) = 90%
For Isotope B (²²X):
Mass of B = 22
Abundance (A%) = 10%
Relative atomic mass (RAM) =?
The relative atomic mass (RAM) of the element can be obtained as follow:
RAM = [(Mass of A × A%)/100] + [(Mass of B × B%)/100]
RAM = [(20 × 90)/100] + [(22 × 10)/100]
RAM = 18 + 2.2
RAM = 20.2 amu
Thus, relative atomic mass (RAM) of the element is 20.2 amu
Answer:
1) Endothermic.
2)
3)
Explanation:
Hello there!
1) In this case, for these calorimetry problems, we can realize that since the temperature decreases the reaction is endothermic because it is absorbing heat from the solution, that is why the temperature goes from 22.00 °C to 16.0°C.
2) Now, for the total heat released by the reaction, we first need to assume that all of it is released by the solution since it is possible to assume that the calorimeter is perfectly isolated. In such a way, it is also valid to assume that the specific heat of the solution is 4.184 J/(g°C) as it is mostly water, therefore, the heat released by the reaction is:
3) Finally, since the enthalpy of reaction is calculated by dividing the heat released by the reaction over the moles of the solute, in this case NH4Cl, we proceed as follows:

Best regards!
Best regards!