Answer:
T₂ = 259.84 K
T₂ = -13.31 °C
Explanation:
Given data:
Initial pressure = 700 mmHg
Initial temperature = 30.0°C (30+273.15 K = 303.15 K)
Final temperature = ?
Final pressure = 600 mmHg
Solution:
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
700 mmHg /303.15 K = 600 mmHg / T₂
T₂ = 600 mmHg × 303.15 K / 700 mmHg
T₂ =181890 mmHg.K /700 mmHg
T₂ = 259.84 K
Temperature in celsius
259.84 K - 273.15 = -13.31 °C
Answer:
The answer is A
Explanation:
That is the only answer that even remotely resembles an ultrasound hope this answered your question.
<span>2NaCN + (1)H2SO4 → Na2SO4 + 2HCN
</span><span>The coefficient of sulfuric acid is 1.</span>
Explanation:
The mass of a pot is 300g and contains 90% aluminum. Find the number of moles of aluminum in the pot. P.A. (Al = 27)
The mass of aluminum present in the pot is:

Hence, in the given pot 270g Al is present.

The gram atomic mass of Al -27 g/mol
Given the mass of Al is 270 g
Substitute these values in the above formula:

Answer is 10.0 mol of Al is present.
Answer:
It increases when the concentration of reactants increases.
Explanation:
Increasing the concentration of reactants in a reaction increases the amount of reacting molecules or ions which would increase the rate of a chemical reaction. Reaction rate does depend on temperature. Increasing temperature also increases reaction rate because particles move faster with the increased kinetic energy to produce more collisions.