It's worth noting that butane is also referred to as n-butane. ... Based on the diagram, butane is considered to be an alkane. It not only contains single covalent bonds, but also has carbon and hydrogen atoms present in its structure.
Since the nucleophile is the actual attacking molecule or molecule that starts the reaction and allows for further steps in the mechanism to occur, it is the limiting reagent, as based on the amount of the nucleophile you have, the reaction will tend to proceed until you run out. The excess would be the sodium hydroxide, it is union part of the solution.
Answer:
160.3 g S
Explanation: there you go
Answer:
The answer to your question is below
Explanation:
2.- 6
3.- Carbon
4.- These electrons can be share to obtain stability.
5.- Protons, electrons
6.- electron cloud
7.- I and III
8.- 1
9.- 8A
10.- 4
11.- F
12.- F
13.- F
14.- T
15.- T
16.- T
17.- T
18.- T (I can not read the question but I think is true)
Atoms do not always contain the same number of electrons and protons, although this state is common. When an atom has an equal number of electrons and protons, it has an equal number of negative electric charges (the electrons) and positive electric charges (the protons). The total electric charge of the atom is therefore zero and the atom is said to be neutral. In contrast, when an atom loses or gains an electron (or the rarer case of losing or gaining a proton, which requires a nuclear reaction), the total charges add up to something other than zero.