1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leno4ka [110]
3 years ago
9

PLS HELP AND EXPLAIN HOW TO DO IT ASWELL ILL MARK YOU BRAINLIEST ​

Mathematics
2 answers:
ValentinkaMS [17]3 years ago
6 0

Answer:

Step-by-step explanation:

Margarita [4]3 years ago
4 0

Answer:

251.33 = 251

Step-by-step explanation:

V= πr²h = π·2²·20 ≈ 251.32741 = 251.33

You might be interested in
4^4 x 4^7 <br><br>How do I work this problem?​
mote1985 [20]
4^4 is simply 4x4x4x4 and 4^7 is 4x4x4x4x4x4x4
6 0
3 years ago
On Monday, it rained 1 1/4 inches. On Tuesday it rained 3/5 inch. How much more did it rain on Monday than on Tuesday.
rosijanka [135]
13/20 :) i can explain if you want me to :)


7 0
3 years ago
Hello, help needed. show work please. 55 points!! due today.
MArishka [77]

Answer:

see below

Step-by-step explanation:

           x+5

y = ----------------------

        x^2 - 2x+1

Since the degree of numerator < degree of denominator ( 1 < 2) there is a horizontal  asymptote: y = 0

4 0
3 years ago
It Says Minute At The End
Kisachek [45]

Answer:

1.368

Step-by-step explanation: 1.14x1.2=1.368

4 0
3 years ago
Help please! show work
e-lub [12.9K]
Your answers are
A = 35.7°
B = 67.6°
C = 76.7°

cosine law

a^2 = b^2 + c^2 -2bc \cos A \\&#10;-2bc \cos A = a^2 - b^2 - c^2 \\ \\&#10;\cos A = \dfrac{a^2 - b^2 - c^2}{-2bc} \\ \\&#10;A = \cos^{-1}\left[ \dfrac{a^2 - b^2 - c^2}{-2bc} \right] \\ \\&#10;A = \cos^{-1}\left[ \dfrac{12^2 - 19^2 - 20^2}{-2(19)(20)} \right]  \\ \\&#10;A = 35.723697

A = 35.723697
sine law for the rest of the angles

\displaystyle&#10;\frac{\sin B}{b} = \frac{\sin A}{a} \\ \\&#10;\sin B = \frac{b \sin A}{a} \\ \\&#10;B = \sin^{-1} \left[ \frac{b \sin A}{a}  \right] \\ \\&#10;B = \sin^{-1} \left[ \frac{19 \sin 35.723697 }{12}  \right]  \\ \\&#10;B \approx 67.58886795

B = 67.58886795
All angles in triangle sum to 180 so find C with that

A + B + C = 180
C = 180 - A - B
C = 180 - 35.723697 - 67.58886795
C = 76.7°

7 0
4 years ago
Other questions:
  • How can percents describe a change in area?
    15·1 answer
  • Seven students took a quiz. Four of these students received a score above 85 percent. Students who received at least an 85 perce
    8·1 answer
  • What is the IQR of 3,7,8,11,13,15,16
    14·2 answers
  • PLSSSS HELP &gt;&gt;&gt;&gt;&gt;Solve the following inequality. Write your answer with no spaces in the inequalities and separat
    13·1 answer
  • Will give you brainlyist pls help​
    13·1 answer
  • How do you change a fraction into a percent?
    13·1 answer
  • Does -8x+8=0 have a solution ?
    6·1 answer
  • Help please!! Can you show work so I can understand it!
    11·1 answer
  • In PE class, a tub contains
    14·1 answer
  • In June, you start a holiday savings account
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!