As the Force of friction is equal to

µ

by using the Law of Action Reaction; as the force normal is the conterforce of gravity

µ


µ

Therefore, by looking at the equation we can infer that
The force of friction is directly proportional to the mass, gravitational constant, and the co-efficent of friction
Because the gravitational constant is dependant on gravitation, a planet's mass and radius also affect the force of friction
But DO NOTE:
That the co-effecient of friction is only applicable between two rubbing surfaces and unaffected by gravitational constants.
If you found this helpful, please rate it as "Brainiest"
Also if this need further explaining, please comment below
The static friction exerted on the block by the incline is
.
The given parameters;
- <em>mass of the block, = M</em>
- <em>coefficient of static friction in section 1, = </em>
<em /> - <em>angle of inclination of the plane, = θ</em>
<em />
The normal force on the block is calculated as follows;
Fₙ = Mgcosθ
The static friction exerted on the block by the incline is calculated as follows;

Thus, the static friction exerted on the block by the incline is 
Learn more here:brainly.com/question/17237604
Answer:
53.5 N
Explanation:
Vertical component of the F force 50 sin30 = 25 N upward
force of gravity = m g = 8 * 9.81 =78.5 N Downward
NET downward force by block on table = net upward force exerted by table = 78.5 -25 =53.5 N