Here is the answer of the given problem above.
Use this formula: <span>P = FV = ma*at = ma^2 t
</span><span>Substitute the values, and therefore, we got m(a0)^2t = m(x)^2 (2t)
then, solve for x which is the acceleration at 2t.
</span>The <span>answer would be a0/sqrt(2).
Hope this answers your question. Thanks for posting.
</span>
Relative motion means a motion relative to a reference point. We can also say, relative motion means motion referred or observed from a reference point.
For example, Alex is in a train and Ace is at the station, when the train starts moving, for Ace it is moving at a speed of 10 m/s, but for Alex it is moving at 0 m/s, or we can say that it is at rest for Alex, but in motion for Ace. This is relative motion.
Answer:
is the current through the body of the man.
energy dissipated.
Explanation:
Given:
- time for which the current lasted,

- potential difference between the feet,

- resistance between the feet,

<u>Now, from the Ohm's law we have:</u>


is the current through the body of the man.
<u>Energy dissipated in the body:</u>



Length L = 25 cm = 0.25 m, B = 600 G = 0.06 T ( 1G = 0.0001 T)
emf= 10 V
Solution:
emf = vBL
v= emf / BL
5 = emf/ (0.25 T× 0.25 m)
emf = 0.3125 v
Magnetic field
The magnetic influence on moving electric charges, electric currents, and magnetic materials is described by a magnetic field, which is a vector field. A force perpendicular to the charge's own velocity and the magnetic field acts on it when the charge is travelling through a magnetic field.
To learn more about the magnetic field refer here:
brainly.com/question/23096032
#SPJ4
Both of them are unpleasant!