1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
telo118 [61]
3 years ago
14

The tired of a car support the weight of a stationary. If onetire has a slow leak, the air pressure within the tire will_____wit

h time, the surface area between the tire and the roadwill____in time, and the net force the tire exerts on the roadwill_____in time.a) Increase, Increase, Increaseb) Decrease, decrease, decreasec) Decrease. increase,increased) Decrease, increase, remain constante) Decrease, increase, decrease
Physics
1 answer:
Westkost [7]3 years ago
7 0

Answer:

d) Decrease, increase, remain constant

Explanation:

If one tire has a slow leak, the air pressure within the tire will_DECREASE____with time due to outflow of air , the surface area between the tire and the road will__INCREASE__in time,due to flattening of tire.

The net force the tire exerts on the road will_REMAIN CONSTANT____in time. It is so because force does not depend upon area. It is pressure which depends upon area. As there is no change in the weight of the car , force on the road will remain constant.

You might be interested in
A series AC circuit contains a resistor, an inductor of 150 mH, a capacitor of 5.00 mF, and a generator with DVmax 5 240 V opera
yanalaym [24]

Given:

Inductance, L = 150 mH

Capacitance, C = 5.00 mF

\Delta V_{max} = 240 V

frequency, f = 50Hz

I_{max} = 100 mA

Solution:

To calculate the parameters of the given circuit series RLC circuit:

angular frequency, \omega =  2\pi f = 2\pi \times50 = 100\pi

a). Inductive reactance,  X_{L} is given by:

\X_{L} = \omega L = 100\pi \times 150\times 10^{-3} = 47.12\Omega

X_{L} = 47.12\Omega 

b). The capacitive reactance,  X_{C} is given by:

\X_{C} = \frac{1}{\omega C} = \frac{1}{2\pi fC} = \frac{1}{2\pi \times 50\times 5.00\times 10^{-3}} = 0.636\Omega

X_{C} = 0.636\Omega

c). Impedance, Z = \frac{\Delta V_{max}}{I_{max}} = \frac{240}{100\times 10^{-3}} = 2400\Omega

Z = 2400\Omega

d). Resistance, R is given by:

Z = \sqrt {R^{2} + (X_{L} - X_{C})}

2400^{2} = R^{2} + (47.12 - 0.636)^{2}

R = \sqrt {5757839.238}

R = 2399.5\Omega

e). Phase angle between current and the generator voltage is given by:

tan\phi = \frac{X_{L} - X_{C}}{R}

\phi =tan^{-1}( \frac{X_{L} - X_{C}}{R})

\phi =tan^{-1}( \frac{47.12 - 0.636}{2399.5}) = tan^{-1}{0.0.01937}

\phi = 1.11^{\circ}

5 0
3 years ago
More people end up in U.S. emergency rooms because of fall-related injuries than from any other cause. At what speed v would som
miss Akunina [59]

Answer:

v_{f}=6.47m/s

Explanation:

Given data

Distance d=7.00 ft= 7*(1/3.281) =2.1336m

Initial velocity vi=0m/s

To find

Final velocity

Solution

From Kinematic equation we know that:

v_{f}^{2} =v_{i}^{2}+2gd\\v_{f}^{2}=0+2(9.81m/s^{2} ) (2.1336m)\\v_{f}^{2}=41.86\\v_{f}=\sqrt{41.86}\\v_{f}=6.47m/s

6 0
3 years ago
Which three quantities can be used to calculate acceleration?
PtichkaEL [24]
D is the correct answer, assuming that this is the special case of classical kinematics at constant acceleration. You can use the equation V = Vo + at, where Vo is the initial velocity, V is the final velocity, and t is the time elapsed. In D, all three of these values are given, so you simply solve for a, the acceleration.
A and C are clearly incorrect, as mass and force (in terms of projectile motion) have no effect on an object's motion. B is incorrect because it is not useful to know the position or distance traveled, unless it will help you find displacement. Even then, you would not have enough information to use a kinematics equation to find a.
4 0
3 years ago
Use the fact that 1inch=2.54cm and convert 52 inches into the equivalent length in centimeters.
Lelu [443]

Answer:

To convert inches to centimeters, use an easy formula and multiply the length by the conversion ratio.

Since one inch is equal to 2.54 centimeters, this is the inches to cm formula to conver

Explanation:

4 0
2 years ago
A 62 kg skier is moving at 6.5 m/s on frictionless horizontal snow-covered plateau when she encounters a rough patch 3.50 m long
Degger [83]

Answer:

(A). The work done by friction in crossing the patch is -637.98 J.

(B). The speed of skier is 10.57 m/s.

Explanation:

Given that,

Mass of skier = 62 kg

Speed = 6.5 m/s

Length = 3.50 m

Coefficient kinetic friction = 0.30

Height = 2.5 m

(A) we need to calculate the work done by friction in crossing the patch

Using formula of work done

W=-\mu mg\times l

Put the value into the formula

W=-0.30\times62\times9.8\times3.50

W=-637.98\ J

The work done by friction in crossing the patch is -637.98 J.

(B) we need to calculate the speed of skier

Using conservation of energy

K.E_{i}+U_{i}-W_{friction}=K.E_{f}+U_{f}

\dfrac{1}{2}mv_{1}^2+mgh-\mu mgl=\dfrac{1}{2}mv_{2}^2+U_{f}

Final potential energy is zero

So, \dfrac{1}{2}mv_{1}^2+mgh-\mu mgl=\dfrac{1}{2}mv_{2}^2

\dfrac{1}{2}v_{2}^2=\dfrac{1}{2}v_{1}^2+gh-\mu gl

Put the value into the formula

\dfrac{1}{2}v_{2}^2=\dfrac{1}{2}\times6.5^2+9.8\times2.5+0.30\times9.8\times3.50

v_{2}=\sqrt{2\times55.915}

v_{2}=10.57\ m/s

The speed of skier is 10.57 m/s.

Hence,  (A).The work done by friction in crossing the patch is -637.98 J.

(B).The speed of skier is 10.57 m/s.

6 0
3 years ago
Other questions:
  • a 40 kilogramstudent runs up a staircase to a floor that is 5.0 meters higher than her starting point in 7.0 seconds. the studen
    10·1 answer
  • You throw a bouncy rubber ball and a wet lump of clay, both of mass m, at a wall. Both strike the wall at speed v, but while the
    13·2 answers
  • Select the correct arrows. Identify the arrows that show the correct direction of heat transfer.
    7·2 answers
  • 9. Using these words explain how matter and energy interact when waves are generated. Disturbance ______________________________
    9·1 answer
  • An ice skater of mass m = 60 kg coasts at a speed of v = 0.8 m/s past a pole. At the distance of closest approach, her center of
    8·1 answer
  • Many adventures like to go rafting on the Colorado River through Grand Canyon National Park. There are many locations where the
    9·1 answer
  • Convert 0.700 to scientific notation
    10·1 answer
  • How can the length of day affect temperatures on Earth?
    7·1 answer
  • Watch Bill Nye the Science Guy wave and I will make you brainlist yes and I will give you 25 points and pls do the notes
    7·1 answer
  • A diver springs upward from a board that is 4.40 m above the water. At the instant she contacts the water her speed is 13.5 m/s
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!