Answer:
16.97
Step-by-step explanation:
the geometric mean value of a set of n numbers is the nth root of the product of all n numbers.
so, here this means
![gm = \sqrt[6]{3 \times 6 \times 12 \times 24 \times 48 \times 96}](https://tex.z-dn.net/?f=gm%20%3D%20%20%5Csqrt%5B6%5D%7B3%20%5Ctimes%206%20%5Ctimes%2012%20%5Ctimes%2024%20%5Ctimes%2048%20%5Ctimes%2096%7D%20)
this would be 16.97
but careful, the problem only asks for the gm between 6 and 48 of the sequence.
so, we actually only consider the subset 6, 12, 24, 48.
therefore
![gm = \sqrt[4]{6 \times 12 \times 24 \times 48}](https://tex.z-dn.net/?f=gm%20%3D%20%20%5Csqrt%5B4%5D%7B6%20%5Ctimes%2012%20%5Ctimes%2024%20%5Ctimes%2048%7D%20)
this is also
![gm = \sqrt[4]{3 \times 2 \times 3 \times 2 \times 2 \times 3 \times 2 \times 2 \times 2 \times 3 \times 2 \times 2 \times 2 \times 2}](https://tex.z-dn.net/?f=gm%20%3D%20%20%5Csqrt%5B4%5D%7B3%20%5Ctimes%202%20%5Ctimes%203%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%203%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%203%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%202%7D%20)
![= \sqrt[4]{ {3}^{4} \times {2}^{10} }](https://tex.z-dn.net/?f=%20%3D%20%20%5Csqrt%5B4%5D%7B%20%7B3%7D%5E%7B4%7D%20%5Ctimes%20%20%7B2%7D%5E%7B10%7D%20%20%7D%20)
![= \sqrt[4]{ {3}^{4} \times {2}^{4} \times {2}^{4} \times {2}^{2} }](https://tex.z-dn.net/?f=%20%3D%20%20%5Csqrt%5B4%5D%7B%20%7B3%7D%5E%7B4%7D%20%20%5Ctimes%20%20%7B2%7D%5E%7B4%7D%20%20%5Ctimes%20%20%7B2%7D%5E%7B4%7D%20%20%5Ctimes%20%20%7B2%7D%5E%7B2%7D%20%7D%20)
![= 3 \times 2 \times 2 \times \sqrt[4]{ {2}^{2} }](https://tex.z-dn.net/?f=%20%3D%203%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%20%20%5Csqrt%5B4%5D%7B%20%7B2%7D%5E%7B2%7D%20%7D%20)

so, we could specify the result as that simple expression
or calculate it
gm = 16.97
hey, the result is the same as for the complete sequence.
coincidence ? no, it is not. but that is a subject for a different question.