Answer: The black ball will have more mass than the white ball.
Explanation: Density of a substance is defined as the ratio of mass and volume occupied by the substance.
Mathematically,

We are given that the two balls are of same size, which means that the volume of both the balls are same. We are also given that the black ball is more dense than the white ball, which means that the black ball will have more mass.
As, 
Answer
12
Explanation
We have a balanced chemical equation from the question that depicts the formation of water.
2H2+O2-->2H2O,
We can clearly see from the equation that, the formation of 2 moles of water molecules requires the input of 2 moles of hydrogen and 1 mole of Oxygen.
So indirectly, it tells that the moles of water molecules will be double of the moles of Oxygen molecules used in the reaction.
So if we say that 6 moles of oxygen is used and the reaction is going in such a way that hydrogen is not a limiting reactant, then 12 moles of water will be produced.
Hope it help!
Explanation:
The given reaction is as follows.

Hence, number of moles of NaOH are as follows.
n = 
= 0.005 mol
After the addition of 25 ml of base, the pH of a solution is 3.62. Hence, moles of NaOH is 25 ml base are as follows.
n = 
= 0.0025 mol
According to ICE table,

Initial: 0.005 mol 0.0025 mol 0 0
Change: -0.0025 mol -0.0025 mol +0.0025 mol
Equibm: 0.0025 mol 0 0.0025 mol
Hence, concentrations of HA and NaA are calculated as follows.
[HA] = 
[NaA] = 
![[A^{-}] = [NaA] = \frac{0.0025 mol}{V}](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%5D%20%3D%20%5BNaA%5D%20%3D%20%5Cfrac%7B0.0025%20mol%7D%7BV%7D)
Now, we will calculate the
value as follows.
pH = 
![pK_{a} = pH - log \frac{[A^{-}]}{[HA]}](https://tex.z-dn.net/?f=pK_%7Ba%7D%20%3D%20pH%20-%20log%20%5Cfrac%7B%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
= 
= 3.42
Thus, we can conclude that
of the weak acid is 3.42.
Answer:
SO₃(g) + H₂O(l) → H₂SO₄(aq)
Explanation:
The<em> molecular formula for the involved species</em> are:
- Sulfur trioxide = SO₃. ("trioxide" indicates the presence of 3 oxygen atoms).
With the above information in mind we can proceed to write the reaction equation:
- SO₃(g) + H₂O(l) → H₂SO₄(aq)