Answer:
S = 1.1 × 10⁻⁹ M
Explanation:
NaCl is a strong electrolyte that dissociates according to the following expression.
NaCl(aq) → Na⁺(aq) + Cl⁻(aq)
Given the concentration of NaCl is 0.15 M, the concentration of Cl⁻ will be 0.15 M.
We can find the molar solubility (S) of AgCl using an ICE chart.
AgCl(s) ⇄ Ag⁺(aq) + Cl⁻(aq)
I 0 0.15
C +S +S
E S 0.15+S
The solubility product (Ksp) is:
Ksp = 1.6 × 10⁻¹⁰ = [Ag⁺].[Cl⁻] = S (0.15 + S)
If we solve the quadratic equation, the positive result is S = 1.1 × 10⁻⁹ M
Answer: FeO is called ferrous oxide while Fe2O3 is ferric oxide
Explanation:
Ferrous oxide, commonly known as iron(II) oxide contains iron that lost 2 elections in the oxidation process. So it is able to bond with other atoms that have an extra 2 electrons to share. Ferric oxide, is commonly known as iron(III) oxide
Quantum numbers are used to describe the location of electrons in atoms.
Principal quantum number(n) tells which energy shell the electrons reside in.
The first energy shell n = 1, second energy shell n = 2 and it goes on.
Azimuthal quantum number (l) states which orbital the electron is most likely to reside in. the number of orbitals in an energy shell depends on the principal quantum number. number of orbitals are from 0 to n-1
If l = 0, s orbital
l = 1 , p orbital
l = 2, d orbital
in 2nd energy shell the number of orbitals are 0,1 etc.
5s-
Principal quantum number n = 5
Azimuthal quantum number l = 0
6p
Principal quantum number n = 6
Azimuthal quantum number l = 1
4d
Principal quantum number n = 4
Azimuthal quantum number l = 2
Answer:
b. Add a few drops of one of the layers to a test tube containing 1 mL of water. Shake the test tube to determine the solubility of the layer in water
Explanation:
Option a is not true, it depends on the compound being extracted.
Option c is not true, although most of the solvents used in extractions have lower boiling point than water there are exceptions, for example toluene.
Option d is not true. Again most of the solvents used in extractions are less dense than water, there are many exceptions, for example chloroform, so for equal volumes the chloroform layer will weigh more.
Option b. is the correct one.
One will test the miscibility of the layer in water. If it inmiscible then one would know is the organic layer. If it is the aqueous layer then it will completely be miscible.