It would cause a drop <span>but I am not sure double check other answers </span>
Answer:
Yes, this is true. The reason is that the flower transpires and sucks the water in and distributes it as much as it can. You can also flip it upside down and hang it with petals down , allowing the liquid to enter the flower and then retaining color for longer periods of time and having more color.
Explanation:
Answer:
The volume of the gas is 2.80 L.
Explanation:
An ideal gas is a theoretical gas that is considered to be made up of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
The Pressure (P) of a gas on the walls of the container that contains it, the Volume (V) it occupies, the Temperature (T) at which it is located and the amount of substance it contains (number of moles, n) are related from the equation known as Equation of State of Ideal Gases:
P*V = n*R*T
where R is the constant of ideal gases.
In this case:
- P= 2 atm
- V= ?
- n=0.223 moles
- R= 0.0821

- T=33 °C= 306 °K (being O°C= 273°K)
Replacing:
2 atm* V= 0.223 moles*0.0821
* 306 K
Solving:

V= 2.80 L
<u><em>The volume of the gas is 2.80 L.</em></u>
Balanced Eqn
2
C
2
H
6
+
7
O
2
=
4
C
O
2
+
6
H
2
O
By the Balanced eqn
60g ethane requires 7x32= 224g oxygen
here ethane is in excess.oxygen will be fully consumed
hence
300g oxygen will consume
60
⋅
300
224
=
80.36
g
ethane
leaving (270-80.36)= 189.64 g ethane.
By the Balanced eqn
60g ethane produces 4x44 g CO2
hence amount of CO2 produced =
4
⋅
44
⋅
80.36
60
=
235.72
g
and its no. of moles will be
235.72
44
=5.36 where 44 is the molar mass of Carbon dioxide
hope this helps
<h3>
Answer:</h3>
The root mean square speeds of O₂ and UF₆ is 513m/s and 155 m/s respectively.
<h3>
Solution and Explanation:</h3>
- To find how fast molecules or particles of gases move at a particular temperature, the root mean square speed is calculated.
- Root mean square speed of a gas is calculated by using the formula;

Where R is the molar gas constant, T is the temperature and M is the molar mass of gas in Kg.
<h3>Step 1: Root mean square speed from O₂</h3>
Molar mass of Oxygen is 32.0 g/mol or 0.032 kg/mol
Temperature = 65 degrees Celsius or 338 K
Molar gas constant = 8.3145 J/k.mol


<h3>
Step 2: Root mean square speed of UF₆ </h3>
The molar mass of UF₆ is 352 g/mol or 0.352 kg/mol


Therefore; the root mean square speeds of O₂ and UF₆ is 513m/s and 155 m/s respectively.