Ca(OH)₂ ==> Ca²⁺ + 2 OH<span>-
Ca(OH)</span>₂ is <span>strong Bases</span><span>
</span>Therefore, the [OH-] equals 5 x 10⁻⁴ M. For every Ca(OH)₂ you produce 2 OH⁻<span>.
</span>
pOH = - log[ OH⁻]
pOH = - log [ <span>5 x 10⁻⁴ ]
pOH = 3.30
pH + pOH = 14
pH + 3.30 = 14
pH = 14 - 3.30
pH = 10.7
hope this helps!</span>
Answer:
Hyponym is the another name for hard water.
Explanation:
Please Mark me brainliest
Oxygen carbon and hydrogen
Answer: A) Inconclusive; you would not know which of the two variables caused the change.
Explanation:
When you set up an experiment, you must make sure that you control the variables such that only one independent variable changes at a time, while all the remainder conditions (the other independent variables) are controlled (fixed).
By observing (measuring) the dependent variable, while only one independent variable changes you can understandhow such independent variable explains (determines) the dependent variable, leading to a conclusion.
Conversely, if two or more independent variables change at a time, then there is no way that you can tell how the output (dependent variable) is related with one or other of the changes of the indipendent variables. You wolud not be able to discriminate (distinguish) the effect of one or other variable, making the experiment inconclusive
I really hope this answer helps you out! It makes my day helping people like you and giving back to the community that has helped me through school! If you could do me a favor, if this helped you and this is the very best answer and you understand that all of my answers are legit and top notch. Please mark as brainliest! Thanks and have a awesome day!
The most likely bond between element X and Iodine would be an ionic, or electrovalent, bond. Iodine has seven electrons in its outer shell, also known as the valence shell. To become perfectly stable, it needs only a single electron from another element. Hence no sharing of electron takes place (usually), which is the condition required for it to be covalent bonding. Hence it's most likely an ionic bonding/