Answer:
(A) 15.0 °C
Explanation:
The water in beaker A gains heat because its initial temperature (10 °C) is less than the initial temperature of the water in beaker B (20 °C) which loses heat.
Let T3 be the final temperature
Heat gained by beaker A = heat loss by beaker B
mc(T3 - T1) = mc(T2 - T3)
The mass and specific heat of water in both beakers are the same. Therefore, (T3 - T1) = (T2 - T3)
T1 is initial temperature of beaker A = 10 °C
T2 is initial temperature of beaker B = 20 °C
T3 - 10 = 20 - T3
T3 + T3 = 20 + 10
2T3 = 30
T3 = 30/2 = 15 °C
A 3.4 × 10⁶ L swimming pool must have a mass of 1.0 × 10⁷ mg Cl₂ to maintain a concentration of 3.0 ppm.
<h3>What is "ppm"?</h3>
"ppm" of "parts per million" is a unit of concentration equivalent to milligrams of solute per liters of solution.
A pool must maintain a chlorine concentration of 3.0 ppm (3.0 mg/L). The mass of chlorine in 3.4 × 10⁶ L is:
3.0 mg Cl₂/L × 3.4 × 10⁶ L = 1.0 × 10⁷ mg Cl₂
A 3.4 × 10⁶ L swimming pool must have a mass of 1.0 × 10⁷ mg Cl₂ to maintain a concentration of 3.0 ppm.
Learn more about ppm here: brainly.com/question/13395702
#SPJ1
I'm not completely sure on this and I apologize if it's wrong, but I believe it's B) Newton's Law.
I think the answer is reversible. Reversible reaction is a kind of reaction which can react in both direction at the same time. And when the both side reactions get the same speed, the reaction is at a equilibrium state.