1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga nikolaevna [1]
3 years ago
7

-3+4u=-31 solve for u

Mathematics
1 answer:
solniwko [45]3 years ago
8 0

Answer:

u = -7

Step-by-step explanation:

-3+4u=-31

Add 3 to each side

-3+3 +4u = -31+3

4u = -28

Divide each side by 4

4u/4 = -28/4

u = -7

You might be interested in
Help with this one because I do not know how to do perpendicular plz put explanation with steps worth 50!
Yuri [45]

Answer:

Therefore, equation of the line that passes through (16,-7) and is perpendicular to the line 2x-3y=12 is 3x+2y=34  

Step-by-step explanation:

Given:  

2x-3y=12  

To Find:  

Equation of line passing through ( 16, -7) and is perpendicular to the line  

2x-3y=12  

Solution:  

2x-3y=12 ...........Given  

\therefore y=\dfrac{2}{3}\times x-4

Comparing with,  

y=mx+c  

Where m =slope  

We get  

Slope = m1 = \dfrac{2}{3}  

We know that for Perpendicular lines have product slopes = -1.

m1\times m2=-1

Substituting m1 we get m2 as

\dfrac{2}{3}\times m2=-1\\\\m2=-\dfrac{3}{2}

Therefore the slope of the required line passing through (16 , -7) will have the slope,

m2=-\dfrac{3}{2}  

Now the equation of line in slope point form given by  

(y-y_{1})=m(x-x_{1})  

Substituting the point (16 , -7) and slope m2 we will get the required equation of the line,  

(y-(-7))=-\dfrac{3}{2}\times (x-16)\\\\2y+14=-3x+48\\3x+2y=34......Equation\ of\ line  

Therefore, equation of the line that passes through (16,-7) and is perpendicular to the line  2x-3y=12 is

3x+2y=34  

3 0
3 years ago
Question
Butoxors [25]

Answer:

slope is (y1-y2)/x1-x2 pick two points on the line

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
What is the value of x?
lesantik [10]
50.6
\frac{x}{72.6 }  =  \frac{46.2 - 14}{46.2}
x = 32.2 \times 72.6  \div 46.2
x = 50.6


8 0
3 years ago
Can someone help me understand this? Because I really don’t understand this at all
Otrada [13]

Answer: I believe it is A OR B

Step-by-step explanation: BECAUSE IF A⇒B AND B⇒C

THEN  ¬A⇒C  I THINK ITS A THO

OR ¬A⇒¬C

7 0
3 years ago
the production of a printer consists of the cost of raw material at 100 dollars the cost of overheads at 80$ and wages at 120$ i
Vadim26 [7]

Answer:

The percentage increase in the production cost of the printer is 3%.

Step-by-step explanation:

We are given that the production of a printer consists of the cost of raw material at 100 dollars the cost of overheads at 80$ and wages at 120$.

Also, the cost of raw materials and overheads are increased by 11% and 20% respectively while wages are decreased by 15%.

Cost of raw material = $100

Cost of overheads = $80

Cost of wages = $120

So, the total cost of the printer = $100 + $80 + $120

                                                   = $300

Now, the increase in the cost of raw material = $100 + 11% of $100

                                                                           = \$100 + (\frac{11}{100} \times \$100)

                                                                           = $100 + $11 = $111

The increase in the cost of overheads = $80 + 20% of $80

                                                                = \$80 + (\frac{20}{100} \times \$80)

                                                                = $80 + $16 = $96

The decrease in the cost of wages = $120 - 15% of $120

                                                          = \$120 - (\frac{15}{100} \times \$120)

                                                          = $120 - $18 = $102

So, the new cost of a printer = $111 + $96 + $102 = $309

Now, the percentage increase in the production cost of the printer is given by;

      % increase =  \frac{\text{Net increase in the cost of printer}}{\text{Original cost of printer}} \times 100

                         =  \frac{\$309- \$300}{\$300} \times 100

                         =  3%

Hence, the percentage increase in the production cost of the printer is 3%.

4 0
3 years ago
Other questions:
  • Please help me Asap will mark Brainliest!!
    12·1 answer
  • Gbhujiklbvnhjkml dxfcgvhj
    13·1 answer
  • On his first five math tests Colin receive the following scores: 82,90,93,62,and 81. What test score must : Burn on his six test
    9·1 answer
  • A total of 505 tickets were sold for a school play they were either adult tickets or student tickets they were 55 more student t
    15·2 answers
  • Can anyone help me with this:<br> 4a+23-22=32<br> Find the value of aa'
    15·2 answers
  • PAST DUE DATE PLEASE HELP. whats is the surface are of this figure​
    7·1 answer
  • What is the vertex of the function?
    13·2 answers
  • A cone has a radius of 3 units and a height of 4 units.
    6·1 answer
  • A washer and a dryer cost $774 combined. The washer costs $76 less than the dryer. What is the cost of the dryer?
    11·2 answers
  • The elgebaric expression for 5y to the product of a and b.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!