Answer:
Yes, a minimum phase continuous time system is also minimum phase when converted into discrete time system using bilinear transformation.
Step-by-step explanation:
Bilinear Transform:
In digital signal processing, the bilinear transform is used to convert continuous time system into discrete time system representation.
Minimum-Phase:
We know that a system is considered to be minimum phase if the zeros are situated in the left half of the s-plane in continuous time system. In the same way, a system is minimum phase when its zeros are inside the unit circle of z-plane in discrete time system.
The bilinear transform is used to map the left half of the s-plane to the interior of the unit circle in the z-plane preserving the stability and minimum phase property of the system. Therefore, a minimum phase continuous time system is also minimum phase when converted into discrete time system using bilinear transformation.
Do u know the area of a circle
??????????????????
<span>The answer is B. C(n) = 0.75n - 0.25.
Let n be the number of pieces. The price for 1 piece is $0.75. The price C for n pieces without a coupon is n * $0.75: C(n) = 0.75n. The coupon value is $0.25. So, this value must be subtracted from the total price of n pieces. Since the coupon values in independent on the number of pieces, the price C for n pieces with the coupon will be: C(n) = 0.75n - 0.25. Therefore, the correct choice is B.</span>
Answer:
The formula is C=5/9(F-32).
Answer:
Step-by-step explanation: