According to Charles' Law the volume of an ideal gas is directly proportional to its absolute temperature in Kelvin keeping the pressure constant.
V∝ T, P is constant
where V, T and P are volume, temperature and pressure
= 
where V₁, T₁, V₂ and T₂ are initial volume, initial temperature, final volume and final temperature.
Answer:
160m/s
Explanation:
To find V Use the following formula V= F*W
V= Velocity F= Frequency W= Wavelength
V=20*8
=160m/s
We can use the ideal gas law equation to find the volume of the gas.
PV = nRT
P - pressure - 400 kPa
V - volume
n - number of moles - 4.00 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 300.0 K
substituting these values in the equation
400 000 Pa x V = 4.00 mol x 8.314 Jmol⁻¹K⁻¹ x 300.0 K
V = 24.9 dm³
Volume is 24.9 dm³
The answer is B) gain 8 electrons