Answer:
pH = 1.32
Explanation:
H₂M + KOH ------------------------ HM⁻ + H₂O + K⁺
This problem involves a weak diprotic acid which we can solve by realizing they amount to buffer solutions. In the first deprotonation if all the acid is not consumed we will have an equilibrium of a wak acid and its weak conjugate base. Lets see:
So first calculate the moles reacted and produced:
n H₂M = 0.864 g/mol x 1 mol/ 116.072 g = 0.074 mol H₂M
54 mL x 1L / 1000 mL x 0. 0.276 moles/L = 0.015 mol KOH
it is clear that the maleic acid will not be completely consumed, hence treat it as an equilibrium problem of a buffer solution.
moles H₂M left = 0.074 - 0.015 = 0.059
moles HM⁻ produced = 0.015
Using the Henderson - Hasselbach equation to solve for pH:
ph = pKₐ + log ( HM⁻/ HA) = 1.92 + log ( 0.015 / 0.059) = 1.325
Notes: In the HH equation we used the moles of the species since the volume is the same and they will cancel out in the quotient.
For polyprotic acids the second or third deprotonation contribution to the pH when there is still unreacted acid ( Maleic in this case) unreacted.
The suggestion is to prevent a puddle of the liquid present in the sample from forming or from it leaking on to the surface on which it is placed. For example, if precipitates of a solid are removed from water and then placed on filter paper to dry, the water will soak into the filter paper and then leak on to the counter on which it is placed. If this precipitate were placed in a watch glass or weighing paper, the water would only evaporate and would not contaminate the sample.
Answer:
F = 800 N
Explanation:
Given data:
Mass = 80 Kg
Acceleration = 10 m/s²
Force = ?
Solution:
Formula:
<em>F = m × a
</em>
F = force
m = mass
a = acceleration
Now we will put the values in formula:
<em>F = m × a
</em>
F = 80 kg <em>× </em>10 m/s²
F = 800 kg.m/s²
kg.m/s² = N
F = 800 N
Answer:
›› FeBr2 molecular weight. Molar mass of FeBr2 = 215.653 g/mol. This compound is also known as Iron(II) Bromide. Convert grams FeBr2 to moles or moles FeBr2 to grams. Molecular weight calculation: 55.845 + 79.904*2 ›› Percent composition by element
Explanation: