Answer:
3.01 × 10^24 atoms of vitamin D
Explanation:
The number of atoms, molecules or ions present in a substance is given by the Avogadro's number which is 6.02 × 10^23.
Hence;
1 molecule of vitamin D contains 6.02 ×10^23 atoms
5 molecules of vitamin D contains 5 × 6.02 ×10^23/1
= 3.01 × 10^24 atoms of vitamin D
Changes to genes can affect the phenotypic traits of an organism, making them look differently.
We will use the expression for freezing point depression ∆Tf
∆Tf = i Kf m
Since we know that the freezing point of water is 0 degree Celsius, temperature change ∆Tf is
∆Tf = 0C - (-3°C) = 3°C
and the van't Hoff Factor i is approximately equal to 2 since one molecule of KCl in aqueous solution will produce one K+ ion and one Cl- ion:
KCl → K+ + Cl-
Therefore, the molality m of the solution can be calculated as
3 = 2 * 1.86 * m
m = 3 / (2 * 1.86)
m = 0.80 molal
To answer this question a balanced chemical equation is necessary. The correct equation is: N2 + 3H2 = 2NH3
From this equation, one mole of nitrogen react with 3 moles of hydrogen to give 2 moles of ammonia.
Therefore, the mole ratio of NH3 to N2 is 2:1