The number of neutrons in a nucleus affects the mass of the atom but not its chemical properties. Thus, a nucleus with six protons and six neutrons will have the same chemical properties as a nucleus with six protons and eight neutrons, although the two masses will be different.
This is an exception to the general electronegativity trend. It can be explained by looking at the electron configurations of both elements.
<span>Be:[He]2<span>s2
</span></span><span>B:[He]2<span>s2</span>2<span>p1
</span></span>
When you remove an electron from beryllium, you are taking away an electron from the 2s orbital. When you remove an electron from boron, you are taking an electron from the 2p orbital. The 2p electrons have more energy than the 2s, so it is easier to remove them as they can more strongly resist the effective nuclear charge of the nucleus.
The advantage of using an orbital notation is that it shows the electron distribution in shells.
<span>Dot structures only show the valence electrons of an atom which are the electrons found at the outermost shell. The orbital notation gives a more detailed depiction of the electrons in each shell. This is most advantageous for atoms that have special cases. </span>
<span>Some examples of atoms that have special electronic configurations are copper and chromium. For example, copper is more stable when the 3d subshell is completely filled. This leaves the 4s subshell with only 1 electron. Chromium is also more stable when its s and d subshells are only half full. The orbital notation depicts these special cases, whereas the dot structure does not.</span>
The correct answer to the question above is heat. Most of the energy from a lower trophic level is converted into heat. When an organism from a higher trophic level consumed an organism from a lower trophic level, it is mostly heat that is being converted to.