Answer:
C. The rate of the reaction begins to decrease as the reactants are used.
Explanation:
a p 3 x
Consider the formation of water molecule. Hydrogen combines with oxygen to form a water molecule.
In this case, the total mass of the reactants = total mass of the products. Also, the number of atoms of hydrogen and oxygen in the reactants side and the products side are equal.
that's all I know
Answer:
Yes, there will be liquid present and the mass is 5.19 g
Explanation:
In order to do this, we need to use the equation of an ideal gas which is:
<em>PV = nRT (1)</em>
<em>Where:</em>
<em>P: Pressure</em>
<em>V: Volume</em>
<em>n: number of moles</em>
<em>R: gas constant</em>
<em>T: Temperature</em>
we know that the pressure is 856 Torr at 300 K. So, if we want to know if there'll be any liquid present, we need to calculate the moles and mass of the CCl3F at this pressure and temperature, and then, compare it to the initial mass of 11.5 g.
From (1), solving for moles we have:
<em>n = PV/RT (2)</em>
Solving for n:
P = 856/760 = 1.13 atm
R = 0.082 L atm / mol K
n = 1.13 * 1 / 0.082 * 300
n = 0.0459 moles
Now, the mass is:
m = n * MM (3)
The molar mass of CCl3F reported is 137.37 g/mol so:
m = 0.0459 * 137.37
m = 6.31 g
Finally, this means that if we put 11.5 g of CCl3F in a container, only 6.31 g will become gaseous, so, this means it will be liquid present, and the mass is:
m = 11.5 - 6.31
m = 5.19 g
I think it is <span>0.823 g H2O+NH3/1 ml H2O+NH3 17.034 g NH3/1 mol 18.016 g H2O/1 mol 0.87 mol NH3/1 kg H2O</span>