Answer:
P and V: inversely proportional
P and T: directly proportional
V and T: inversely proportional
Explanation:
For pressure and volume, as the volume goes up, meaning the container gets bigger, the pressure would go down. There would be more room in the container, so there would be less collisions between the molecules themselves and between the molecules and the container. This makes them inversely proportional.
For pressure and temperature, as the pressure goes up, there are more collisions, so the particles move faster. Temperature is the speed of the particles, so, since both pressure and temperature would go up at the same time, they are directly proportional.
For volume and temperature, this is similar to the PV relationship. As volume increases, there are less collisions between the particles. This means that the particles are going to move slower. Therefore, as volume goes up, temperature goes down, so they are inversely proportional.
Sorry this is super long, but I hope it fully explains the question for you! ☺
Answer:
The answer is decreased temperature and increased salinity
Explanation:
It is what is known as the thermohaline circulation
The thermohaline circulation moves the water slowly. This water moves mainly due to differences in its relative density. Much denser water sinks over water that is less dense. Two factors impact the density of seawater: temperature and salinity.
Cold water is denser than hot water:
-Water cools when it loses heat, it occurs at high latitudes.
-Water is heated when it receives energy from the sun, at low latitudes.
Saltier water is much denser than water that has less salt:
-Sea water becomes salty if the evaporation rate increases.
-Sea water becomes less salty if there is a water inlet over the sea.
The answer is C because you have to find acceleration.
Answer:
6 neutrons
Explanation:
6 neutrons
Boron having an atomic number of 5 means that it will have 5 protons. 11 atomic mass units in total. Neutrons also have a atomic mass unit of 1. So there are 6 neutrons
Answer:
The granite block transferred <u>4080 joules</u> of energy, and the mass of the water is <u>35.84 grams</u>.
Explanation:
The equation needed to answer both parts of the question is:
Q = mcΔT
In this equation,
-----> Q = energy/heat (J)
-----> m = mass (g)
-----> c = specific heat (J/g°C)
-----> ΔT = change in temperature (°C)
<u>Part #1:</u>
First, you need to find the energy transferred from granite block using the previous equation. You have been given the mass, specific heat, and change in temperature.
Q = ? J c = 0.795 J/g°C
m = 126.1 g ΔT = 92.6 °C - 51.9 °C = 40.7 °C
Q = mcΔT
Q = (126.1 g)(0.795 J/g°C)(40.7 )
Q = 4080
<u>Part #2:</u>
Secondly, using the energy calculated in Part #1, you need to calculate the mass of the water. You have calculated the energy transferred, and have been given the specific heat and change in temperature.
Q = 4080 J c = 4.186 J/g°C
m = ? g ΔT = 51.9 °C - 24.7 °C = 27.2 °C
Q = mcΔT
4080 J = m(4.186 J/g°C)(27.2 °C)
4080 J = m(113.8592)
35.84 = m