Answer: 0.0069L
Explanation:
2H2O(l) ---->O2(g) + 4H+(aq) + 4e-
no of moles= it/eF
NO of moles of O2 produced = (Current in Ampere x Time in second)/ (Faraday constant x Number of electrons required)
Moles of O2 produced = (0.02x (60 x 60X1.5 s)/(96485 x 4)
= 0.0002798 moles= 2.798x 10 ^-4moles
Using ideal gas equation,
P V = n R T
Where, P is the pressure,
V is the volume,
n is the number of moles,
R is the gas constant, and T is the temperature
We have, 1 bar = 0.986923 atm
Substituting the values,
V = nRT/P = (2.798 x 10-4moles x 0.08205 L atm mol K x 298 K)/ 0.986923 atm = 0.0069L
Volume of O2 produced = 0.0069L
The number of Ml of C₅H₈ that can be made from 366 ml C₅H₁₂ is 314.7 ml of C₅H₈
<u><em>calculation</em></u>
step 1: write the equation for formation of C₅H₈
C₅H₁₂ → C₅H₈ + 2 H₂
Step 2: find the mass of C₅H₁₂
mass = density × volume
= 0.620 g/ml × 366 ml =226.92 g
Step 3: find moles Of C₅H₁₂
moles = mass÷ molar mass
from periodic table the molar mass of C₅H₁₂ = (12 x5) +( 1 x12) = 72 g/mol
moles = 226.92 g÷ 72 g/mol =3.152 moles
Step 4: use the mole ratio to determine the moles of C₅H₈
C₅H₁₂:C₅H₈ is 1:1 from equation above
Therefore the moles of C₅H₈ is also = 3.152 moles
Step 5: find the mass of C₅H₈
mass = moles x molar mass
from periodic table the molar mass of C₅H₈ = (12 x5) +( 1 x8) = 68 g/mol
= 3.152 moles x 68 g/mol = 214.34 g
Step 6: find Ml of C₅H₈
=mass / density
= 214.34 g/0.681 g/ml = 314.7 ml
Answer: It depends equilibrium constant K
Explanation: You need to to have reaction formula.
If K >> 1 then concentrations of products are much bigger than
concentrations of reactants. If K < < 1, concentration of products is small.
C. Formation of a new substance