Starting from rest, a solid sphere rolls without slipping down an incline plane. at the bottom of the incline, what does the angular velocity of the sphere depend upon? check all that apply. check all that apply. the angular velocity depends upon the length of the incline. the angular velocity depends upon the mass of the sphere. the angular velocity depends upon the radius of the sphere. the angular velocity depends upon the height of the incline
Answer:
6.3 rev/s
Explanation:
The new rotation rate of the satellite can be found by conservation of the angular momentum (L):

The initial moment of inertia of the satellite (a solid sphere) is given by:

Where
: is the satellite mass and r: is the satellite's radium

Now, the final moment of inertia is given by the satellite and the antennas (rod):

Where
: is the antenna's mass and l: is the lenght of the antenna

So, the new rotation rate of the satellite is:

Therefore, the new rotation rate of the satellite is 6.3 rev/s.
I hope it helps you!
Explanation:
Without the metric system, we'd have a different International System of Units, the metric system is important because 1mm is 0.1cm, 1 cm is 0.01m, with the imperial system the conversion is tedious. The most important feature of the metric system is its base in scientific fact and repeatable standards of measurement
Answer:
(1) 42.94 m
(2) 
Explanation:
Let us first draw a figure, for the given question as below:
In the figure, we assume that the person starts walking from point A to travel 11 m exactly
south of west to point B and from there, it walks 21 m exactly
west of north to reach point C.
Let us first write the two displacements in the vector form:

Now, the vector sum of both these vectors will give us displacement vector from point A to point C.

Part (1):
the magnitude of the shortest displacement from the starting point A to point the final position C is given by:

Part (2):
As the vector AC is coordinates lie in the third quadrant of the cartesian vector plane whose angle with the west will be positive in the north direction.
The angle of the shortest line connecting the starting point and the final position measured north of west is given by:

C. 76 I just did the question earlier