Answer:
Explanation:
That an optical illusion somehow interferes with the way we see things. Even simple illusions can completely fool us. If you search out the term, you'll see all kinds of them.
Most critically we see one thing and know another to be true. But knowing the truth doesn't help us. We still see and believe the truth of the illusion.
Answer:
E = 13.2 kWh
, Cost = $ 10.8
Explanation:
We can look for the consumed energy from the expression of the power
P = W / t
The work is equal to the variation of the kinetic energy, for which
P = E / t
E = P t
look for the energy consumed in one day and multiply by the days of the month in the month
E = 110 4 30
E = 13200 W h
E = 13.2 kWh
the cost of this energy is
Cost = 0.9 12
Cost = $ 10.8
Monoammonium phosphate effectively smothers the fire, while sodium bicarbonate induces a chemical reaction which extinguishes the fire. Fire extinguishers with a Class C rating are suitable for fires in “live” electrical equipment.
Answer:
The answer to the question is;
The total potential energy of the mass on the spring when the mass is at either endpoint of its motion is 5.0255 Joules.
Explanation:
To answer the question, we note that the maximum speed is 2.30 m/s and the mass is 1.90 kg
Therefore the maximum kinetic energy of motion is given by
Kinetic Energy, KE =
Where,
m = Attached vibrating mass = 1.90 kg
v = velocity of the string = 2.3 m/s
Therefore Kinetic Energy, KE =
×1.9×2.3² = 5.0255 J
From the law of conservation of energy, we have the kinetic energy, during the cause of the vibration is converted to potential energy when the mass is at either endpoint of its motion
Therefore Potential Energy PE at end point = Kinetic Energy, KE at the middle of the motion
That is the total potential energy of the mass on the spring when the mass is at either endpoint of its motion is equal to the maximum kinetic energy.
Total PE = Maximum KE = 5.0255 J.
Answer:
From the previous explanation Student No. 1 has the correct explanation
Explanation:
When the fluorescent lamp emits a light it has the shape of its emission spectrum, this light collides with the atoms of Nitrogen and excites it, so these wavelengths disappear, lacking in the spectrum seen by the observed, for which we would see an absorption spectrum
The nitrogen that was exited after a short time is given away in its emission lines, in general there are many lines, so the excitation energy is divided between the different emission lines, which must be weak
From the previous explanation Student No. 1 has the correct explanation