Answer:
but many of them comes here to do time pass
Answer:
![f(g(x))=\frac{1}{(x^{2}+1)^{2}} +\sqrt[3]{x^{2}+1}](https://tex.z-dn.net/?f=f%28g%28x%29%29%3D%5Cfrac%7B1%7D%7B%28x%5E%7B2%7D%2B1%29%5E%7B2%7D%7D%20%2B%5Csqrt%5B3%5D%7Bx%5E%7B2%7D%2B1%7D)
Step-by-step explanation:
we have
![f(x)=x^{2} +\frac{1}{\sqrt[3]{x}}](https://tex.z-dn.net/?f=f%28x%29%3Dx%5E%7B2%7D%20%2B%5Cfrac%7B1%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D)

we know that
In the function

The variable of the function f is now the function g(x)
substitute
![f(g(x))=(\frac{1}{x^{2}+1})^{2} +\frac{1}{\sqrt[3]{(\frac{1}{x^{2}+1})}}](https://tex.z-dn.net/?f=f%28g%28x%29%29%3D%28%5Cfrac%7B1%7D%7Bx%5E%7B2%7D%2B1%7D%29%5E%7B2%7D%20%2B%5Cfrac%7B1%7D%7B%5Csqrt%5B3%5D%7B%28%5Cfrac%7B1%7D%7Bx%5E%7B2%7D%2B1%7D%29%7D%7D)
![f(g(x))=\frac{1}{(x^{2}+1)^{2}} +\sqrt[3]{x^{2}+1}](https://tex.z-dn.net/?f=f%28g%28x%29%29%3D%5Cfrac%7B1%7D%7B%28x%5E%7B2%7D%2B1%29%5E%7B2%7D%7D%20%2B%5Csqrt%5B3%5D%7Bx%5E%7B2%7D%2B1%7D)
Answer:
99
Step-by-step explanation:
Geometry is not my best subject but here's what I did:
The sum of the angles in a triangle is 180 so if we add 4 and 8 we can get angle 6
--> 180 - (37+62)
--> 180 - 99
---> 81
The sum of the angles on a line intersected at a point = 180
180 - 81 = Angle 5
Angle 5 = 99