Let's first establish what we already know for this problem.
x = total number of hotdogs sold
y = total profit from total sales of hotdogs
Let's also establish the other equations which we will require in order to solve this problem.
Equation No. 1 -
Profit for 40 hotdogs = $90 profit
Equation No. 2 -
Profit for 80 hotdogs = $210 profit
STEP-BY-STEP SOLUTION
From this, we can use the formula y = mx + b & substitute the values for x & y from one of the two previous equations into the formula in order to obtain the values of m & b for the final equation. Here is an example of the working out as displayed below:
Firstly, using the first or second equation, we make either m or b the subject. Here I have used the first equation and made m the subject:
Equation No. 1 -
y = mx + b
90 = m ( 40 ) + b
40m = 90 - b
m = ( 90 - b ) / 40
Now, make b the subject in the second equation as displayed below:
Equation No. 2 -
y = mx + b
210 = m ( 80 ) + b
210 = 80m + b
b = 210 - 80m
Then, substitute m from the first equation into the second equation.
Equation No. 2 -
b = 210 - 80m
b = 210 - 80 [ ( 90 - b ) / 40 ]
b = 210 - [ 80 ( 90 - b ) / 40 ]
b = 210 - 2 ( 90 - b )
b = 210 - 180 - 2b
b - 2b = 30
- b = 30
b = - 30
Now, substitute b from the second equation into the first equation.
Equation No. 1 -
m = ( 90 - b ) / 40
m = ( 90 - ( - 30 ) / 40
m = ( 90 + 30 ) / 40
m = 120 / 40
m = 3
Through this, we have established that:
m = 3
b = - 30
Therefore, the final equation to model the final profit, y, based on the number of hotdogs sold, x, is as follows:
y = mx + b
y = ( 3 )x + ( - 30 )
ANSWER:
y = 3x - 30
Answer:
$0.03
Step-by-step explanation:
2.31/11 =.21
2.70/15 =.18
.21-.18 = .03
Answer:
the slope is flatter
the line is shifted 7 down
Step-by-step explanation:
Answer: $50
Step-by-step explanation:
Answer:
C) 20.97 AED
Step-by-step explanation:
To find the expected value, E(X), or mean μ of a discrete random variable X, simply multiply each value of the random variable by its probability and add the products. The formula is given as
.
Here, x represents values of the random variable X,
represents the corresponding probability, and symbol
represents the sum of all products
. Here we use the symbol
for the mean because it is a parameter. It represents the mean of a population.
In this case, the expected value of the ticket is 
This means that Ahmad can expect to win 20.97 AED for the ticket.