Answer:
impossible
Step-by-step explanation:
X + X + 1 + X + 2 = 56. To solve for X, you first add the integers together and the X variables together. Then you subtract 3 from each side, followed by dividing by 3 on each side. ...
3X + 3 = 56. 3X + 3 - 3 = 56 - 3.
3X = 53. 3X/3 = 53/3.
X = 17 2/3. Since 17 2/3 is not an integer, there is no true answer to this problem.
Answer:
Yes
Step-by-step explanation:
First, suppose that nothing has changed, and possibility p is still 0.56. It's our null hypothesis. Now, we've got Bernoulli distribution, but 30 is big enough to consider Gaussian distribution instead.
It has mean μ= np = 30×0.56=16.8
standard deviation s = √npq
sqrt(30×0.56×(1-0.56)) = 2.71
So 21 is (21-16.8)/2.71 = 1.5494 standard deviations above the mean. So the level increased with a ˜ 0.005 level of significance, and there is sufficient evidence.
2.8.1

By definition of the derivative,

We have

and

Combine these fractions into one with a common denominator:

Rationalize the numerator by multiplying uniformly by the conjugate of the numerator, and simplify the result:

Now divide this by <em>h</em> and take the limit as <em>h</em> approaches 0 :

3.1.1.
![f(x) = 4x^5 - \dfrac1{4x^2} + \sqrt[3]{x} - \pi^2 + 10e^3](https://tex.z-dn.net/?f=f%28x%29%20%3D%204x%5E5%20-%20%5Cdfrac1%7B4x%5E2%7D%20%2B%20%5Csqrt%5B3%5D%7Bx%7D%20-%20%5Cpi%5E2%20%2B%2010e%5E3)
Differentiate one term at a time:
• power rule


![\left(\sqrt[3]{x}\right)' = \left(x^{1/3}\right)' = \dfrac13 x^{-2/3} = \dfrac1{3x^{2/3}}](https://tex.z-dn.net/?f=%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%27%20%3D%20%5Cleft%28x%5E%7B1%2F3%7D%5Cright%29%27%20%3D%20%5Cdfrac13%20x%5E%7B-2%2F3%7D%20%3D%20%5Cdfrac1%7B3x%5E%7B2%2F3%7D%7D)
The last two terms are constant, so their derivatives are both zero.
So you end up with
