Answer:
Step-by-step explanation:
Refer to attached for points
a) f(-1) = 3 as per graph
b) f(x) = 6
We add horizontal line through point y=6 to find intersections with the graph
Take x-values of those points. The points are x = -3, x = -2, x = 2
Answer:
677
Step-by-step explanation: I divided?
C: 585, You divide 1371 by 75, and multiply that by 32, then round up. 1371 is proportional to 75 and x is proportional to 32.
<span>
1. Find the exact value by using a half-angle identity. sin 22.5°
</span>
Using the half angle formula you get:
<span><span><span><span>sin2(</span>θ)=12<span>[1−<span>cos(2</span>θ)]</span></span>
</span>if </span><span><span>θ=22.5°</span> then </span><span><span><span>2θ=45°</span>
</span>so you get:
</span><span><span><span>sin2(22.5°)</span>=12<span>[1−<span>cos(45°)</span>]</span></span>
</span><span><span><span><span><span>sin2(22.5°)</span>=12[</span><span>1−<span>√2/2]</span><span>=<span><span>2−√2</span>4</span>
</span></span></span>and square root both sides:
</span><span><span><span><span><span>sin(22.5°)</span>=±</span><span>√<span><span>2−√2</span>4</span>=±0.382</span></span>
</span>so </span></span>
<span>
sin(22.5°)=0.382
the answer is the letter D) one half times the square root of quantity two minus square root of two
</span>
<span>2. Verify the identity.
cot x minus pi divided by two. </span>=
-tan x
Cot(x-pi/2)=-tan(x)
sin(A − B) = sin A cos B −
cos A sin B
sin(x – pi/2) = sin x cos (pi/2)
− cos x sin (pi/2)=-cosx
cos(A − B) = cos A cos B − sin
A sin B
cos(x− pi/2) = cos x cos pi/2
− sin x sin pi/2=-sinx
Cot(x-pi/2)=cos(x-pi/2)/sin(x-pi/2)
<span>=
(-sinx)/(-cosx)=-tanx--------------ok</span>
Answer:
m<R=44.9,m<S=56.9,m<T=44.9,m<U= 32.9.
Step-by-step explanation:
When two chords are equal then the measure of the arcs are equal.
Chord RU= Chord UT
Or , m arc RU= m arc UT,
3z-4=x+2z+7 Or z=x+11
Chord RS=Chord ST ,
m arc RS=m arc ST=3x+5
Sum of m arc in a circle =360 degrees.
Or ,
3x+5+3x+5+3z-4+x+2z+7=360
7x+5z+13=360
Substituting z=x+11
7x+5(x+11)+13=360
7x+5x+55+13=360
12x+68=360
12x=292,x=24.3
z=x+11=11+24.3=34.3
m arc RU=marc UT= 3z-4=3(24.3)-4=69
m arc RS =marc ST= 3x+5=3(24..3)+5=77.9
m<R= (marc UT+ m arc ST)÷2
m<R=(69+77.9)÷2=73.45
m<S= (m arc RU+m arc UT)÷2
m<S= (69+69)÷2=69
m<T=(m arc RU+m arc RS)÷2=73.45
m<U=(m arc RS+m arc m arc ST)÷2=77.9