1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verdich [7]
3 years ago
15

Five members of the Varsity Math team are running late for a big

Mathematics
1 answer:
forsale [732]3 years ago
6 0

Answer: What is the question?

You might be interested in
(b) factorise <br>(3m-1)(6-a)-(m+3)(6-a)​
Step2247 [10]

Answer:

Step-by-step explanation:

(3m-1)(6-a)-(m+3)(6-a)

=3m(6-a)-1(6-a)-m(6-a)+3(6-a)

=18m-3ma-6+a-6m+ma+18-3a

=12m-2ma+12-2a

=2(6m-ma+6-a)

7 0
3 years ago
What is the value of the missing angle?<br> a.120 <br>b.130 <br>c.155 <br>d.720​
tatyana61 [14]

Answer:

B.

Because the number of sides is 6 so the s go interior angles is 720. So if u want to get x u need to sum up the rest of the angles anf subtract from 720 giving an answer of 130

6 0
2 years ago
Help me on these questions
mojhsa [17]

Answer:

a) The equation is (y - 1)² = -8 (x - 4)

b) The equation is (x - 1)²/25 + (y - 4)²/16 = 1

c) The equation of the ellipse is (x - 3)²/16 + y²/4 = 1

Step-by-step explanation:

a) Lets revise the standard form of the equation of the parabola with a

   horizontal axis

# (y - k)² = 4p (x - h), (h , k) are the coordinates of its vertex and p ≠ 0

- The focus of it is (h + p , k)

* Lets solve the problem

∵ The focus is (2 , 1)

∵ focus is (h + p , k)

∴ h + p = 2 ⇒ subtract p from both sides

∴ h = 2 - p ⇒ (1)

∴ k = 1

∵ It opens left, then the axis is horizontal and p is negative

∴ Its equation is (y - k)² = 4p (x - h)

∵ k = 1

∴ Its equation is (y - 1)² = 4p (x - h)

- The parabola contains point (2 , 5), substitute the coordinates of the

 point in the equation of the parabola

∴ (5 - 1)² = 4p (2 - h)

∴ (4)² = 4p (2 - h)

∴ 16 = 4p (2 - h) ⇒ divide both sides by 4

∴ 4 = p (2 - h) ⇒ (2)

- Use equation (1) to substitute h in equation (2)

∴ 4 = p (2 - [2 - p]) ⇒ open the inside bracket

∴ 4 = p (2 - 2 + p) ⇒ simplify

∴ 4 = p (p)

∴ 4 = p² ⇒ take √ for both sides

∴ p = ± 2, we will chose p = -2 because the parabola opens left

- Substitute the value of p in (1) to find h

∵ h = 2 - p

∵ p = -2

∴ h = 2 - (-2) = 2 + 2 = 4

∴ The equation of the parabola in standard form is

  (y - 1)² = 4(-2) (x - 4)

∴ The equation is (y - 1)² = -8 (x - 4)

b) Lets revise the equation of the ellipse

- The standard form of the equation of an ellipse with  center (h , k)

 and major axis parallel to x-axis is (x - h)²/a² + (y - k)²/b² = 1  

- The coordinates of the vertices are (h ± a , k )  

- The coordinates of the foci are (h ± c , k), where c² = a² - b²  

* Now lets solve the problem

∵ Its vertices are (-4 , 4) and (6 , 4)

∵ The coordinates of the vertices are (h + a , k ) and (h - a , k)  

∴ k = 4

∴ h + a = 6 ⇒ (1)

∴ h - a = -4 ⇒ (2)

- Add (1) and (2) to find h

∴ 2h = 2 ⇒ divide both sides by 2

∴ h = 1

- Substitute the value of h in (1) or (2) to find a

∴ 1 + a = 6 ⇒subtract 1 from both sides

∴ a = 5

∵ The foci at (-2 , 4) and (4 , 4)

∵ The coordinates of the foci are (h + c , k) , (h - c , k)

∴ h + c = 4

∵ h = 1

∴ 1 + c = 4 ⇒ subtract 1 from both sides

∴ c = 3

∵ c² = a² - b²

∴ 3² = 5² - b²

∴ 9 = 25 - b² ⇒ subtract 25 from both sides

∴ -16 = -b² ⇒ multiply both sides by -1

∴ 16 = b²

∵ a² = 25

∵ The equation of the ellipse is (x - h)²/a² + (y - k)²/b² = 1

∴ The equation is (x - 1)²/25 + (y - 4)²/16 = 1

c) How to identify the type of the conic  

- Rewrite the equation in the general form,  

 Ax² + Bxy + Cy² + Dx + Ey + F = 0  

- Identify the values of A and C from the general form.  

- If A and C are nonzero, have the same sign, and are not equal  

 to each other, then the graph is an ellipse.  

- If A and C are equal and nonzero and have the same sign, then

 the graph is a circle  

- If A and C are nonzero and have opposite signs, and are not equal  

 then the graph is a hyperbola.  

- If either A or C is zero, then the graph is a parabola  

* Now lets solve the problem

∵ x² + 4y² - 6x - 7 = 0

∵ The general form of the conic equation is

   Ax² + Bxy + Cy² + Dx + Ey + F = 0  

∴ A = 1 and C = 4

∵ If A and C are nonzero, have the same sign, and are not equal  to

  each other, then the graph is an ellipse.

∵ x² + 4y² - 6x - 7 = 0 ⇒ re-arrange the terms

∴ (x² - 6x ) + 4y² - 7 = 0

- Lets make x² - 6x completing square

∵ 6x ÷ 2 = 3x

∵ 3x = x × 3

- Lets add and subtract 9 to x² - 6x to make the completing square

 x² - 6x + 9 = (x - 3)²

∴ (x² - 6x + 9) - 9 + 4y² - 7 = 0 ⇒ simplify

∴ (x - 3)² + 4y² - 16 = 0 ⇒ add 16 to both sides

∴ (x - 3)² + 4y² = 16 ⇒ divide all terms by 16

∴ (x - 3)²/16 + 4y²/16 = 1 ⇒ simplify

∴ (x - 3)²/16 + y²/4 = 1

∴ The equation of the ellipse is (x - 3)²/16 + y²/4 = 1

5 0
3 years ago
What is the quantity proportional to 18/6
mario62 [17]

Answer:

18/6=3

Step-by-step explanation:

18/6÷3=6/2

6/2=3

7 0
3 years ago
Need help please...............................
Hunter-Best [27]
Note that the side adjacent to angle XYZ is given (6 cm) and that the hypo is also given (15 cm).  Thus, cos XYZ = adj / hyp = 6 cm / 15 cm  = 2/5 = 0.4.

XYZ is then  arc cos 0.4.  Use the arccos function on your calculator to determine XYZ and give XYZ in both degrees and radians.
7 0
3 years ago
Other questions:
  • Can you guys plz help me with the customary units of weight
    10·1 answer
  • HOW MANY TERMS ARE IN THE FOLLOWING EXPRESSION. -6x-6y-6y
    9·1 answer
  • If you spin a spinner with eight equal sections numbered (1 through 8), find P(factor of 6).
    6·1 answer
  • A swim coach has at most $800 to buy equipment for the swim team. Each pull buoy costs $5.50 and each kickboard costs $10. Let x
    5·1 answer
  • Please answer correctly !!!!!!!!!!!!!!!! Will mark brainliest !!!!!!!!!!!!!!!!!!!!
    13·1 answer
  • Find the volume of the rectangular pyramid.
    7·1 answer
  • Can somebody Help Me Solve This Question? Please give an explanation to your solution
    5·1 answer
  • Which of these sets is a function ?
    14·2 answers
  • Angles question <br>can someone help me find the values of j, k and m​
    7·2 answers
  • You can rewrite the trajectory equation as y = -16(x-1)^2 + 19
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!