Answer:
Area of remaining cardboard is 224y^2 cm^2
a + b = 226
Step-by-step explanation:
The complete and correct question is;
A rectangular piece of cardboard is 16y cm long and 23y cm wide. Four square pieces of cardboard whose sides are 6y cm each are cut away from the corners. Find the area of the remaining cardboard. Express your answer in terms of y. If your answer is ay^b, then what is a+b?
Solution;
Mathematically, at any point in time
Area of the cardboard is length * width
Here, area of the total cardboard is 16y * 23y = 368y^2 cm^2
Area of the cuts;
= 4 * (6y)^2 = 4 * 36y^2 = 144y^2
The area of the remaining cardboard will be :
368y^2-144y^2
= 224y^2
Compare this with;
ay^b
a = 224, and b = 2
a + b = 224 + 2 = 226
Answer:
<em>B. The graph of g is the graph of f shifted 2 units down</em>
Step-by-step explanation:
<u>Graph of Functions</u>
We have two functions:
f(x)=3^x
g(x)=3^x-2
Since g(x)=f(x)-2 it will be represented as an identical graph as that for f(x), but vertically displaced 2 units down. Let's check it by plugging some points
f(0)=3^0=1
g(0)=3^0-2=-1
f(1)=3^1=3
g(1)=3^1-2=1
f(3)=3^3=27
g(3)=3^3-2=25
We can notice the values of g(x) are always 2 units below f(x), thus the correct answer is
B. The graph of g is the graph of f shifted 2 units down
H(0)=8. You plug in zero for x you get y=8. So h(0)=8
In order to check you would plug in the value of x and see if it equals the same thing.
or do the opposite of the equation. it depends on if you are dealing with x or not. so if you have 6-3 is 3 you can do 3+3 is 6
B........................