The reaction equation is:
CaF₂ + H₂SO₄ → 2HF + CaSO₄
The molar ratio between fluorite and hydrogen fluoride is 1 : 1.
The moles of fluorite supplied are:
Moles = 15.6 / 78.07
Moles = 0.200
The moles of hydrogen fluoride produced will be 0.2.
Now, we may use the ideal gas equation to determine the temperature:
PV = nRT
T = PV/nR
T = (899 * 7.4) / (0.2 * 62.36)
T = 533.40 K
The temperature will be 260.25 °C
If I remember correctly, it would be B. A very large amount of energy is produced from a tremendous mass.
Answer:
The partial pressure of the other gases is 0.009 atm
Explanation:
Step 1: Data given
Air is about 78.0% nitrogen molecules and 21.0% oxygen molecules and 1% of other gases.
The atmospheric pressure = 0.90 atm
Step 2: Calculate mol fraction
If wehave 100 moles of air, 78 moles will be nitrogen,
21 moles will be oxygen, and 1 mol will be other gases.
Mol fraction = 1/100 = 0.01
Step 3: Calculate the partial pressure of the other gases
Pgas = Xgas * Ptotal
⇒ Pgas = the partial pressure = ?
⇒ Xgas = the mol fraction of the gas = 0.01
⇒Ptotal = the total pressure of the pressure = 0.90 atm
Pgas = 0.01 * 0.90 atm
Pgas = 0.009 atm
The partial pressure of the other gases is 0.009 atm
Answer:
This tells us the radial velocity of the object and that the object is approaching or coming towards us.
Explanation:
Certain chemicals radiate with particular wavelengths or colors when their temperature is raised or when they are charged electrically. Also observable are dark strokes separating the spectrum known as absorption lines
These spectral lines of chemicals are well known as stated above and from the phenomenon of Doppler effect, spectroscopy can be used to detect the movement of a distant object by the change of the emitted frequency of the wavelength
The Doppler effect is used in calculating the radial velocity of a distant object due to the fact that an approaching object compresses its emitted signal wavelength while a receding object has a longer wavelength than normal