Answer:
<u><em>0.03 m/s</em></u>
Explanation:
<em>Applying law of conservation of momentum, </em>
- <em>m₁v₁ + m₂v₂ = (m₁ + m₂)v</em>
- <em>0.105(24) + 75(0) = (0.105 + 75)v</em>
- <em>75.105v = 2.52</em>
- <em>v = 2.52/75.105</em>
- <em>v = </em><u><em>0.03 m/s</em></u>
Answer:
1.34352 kg
Explanation:
= Mass of water falling = 1 kg
h = Height of fall = 0.1 km
= Change in temperature = 0.1
c = Specific heat of water = 4186 J/kg K
g = Acceleration due to gravity = 9.81 m/s²
= Mass of water in the vessel
Here the potential energy will balance the internal energy

Mass of the water in the vessel is 1.34352 kg
The wires is what is needed to put together the whole thing, kinda like glue when you're gluing a piece of paper on it.
Anyways, the battery is the main source and main energy per say.
That energy that comes from the battery, thanks to the wires, it can transfer that said energy to both the switch and light bulb.
And as you flick the switch, it depends of how you put it together, there's two options, turning the light bulb on or turning it off.
Though it doesn't mean that since the light bulb is connected to the battery makes the bulb turn on no matter what since the switch can cancel the main source's energy.
- Ouma :>
Answer: Drink water, practice, do some light stretches
Explanation:
1 kilometre is equal to 1000m
and 4.1 minutes is equal to 246 seconds
thus 1000/246 = 4.065 m/s
and the direction is towards the west