1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Varvara68 [4.7K]
3 years ago
12

A 9.0 g wad of sticky clay is hurled horizontally at a 90 g wooden block initially at rest on a horizontal surface. The clay sti

cks to the block. After impact, the block slides 7.50 m before coming to rest. If the coefficient of friction between block and surface is 0.650, what was the speed of the clay (in m/s) immediately before impact?
Physics
1 answer:
Alex787 [66]3 years ago
4 0

Answer:

107.58 m/s

Explanation:

from the question we are given the following:

mass of the stick (M₁)= 9 g = 0.009 kg

mass of the block (M₂)= 90 g = 0.09 kg

total mass (M₁+M₂) = 99 g = 0.099 kg

distance (s) = 7.5 m

coefficient of friction (Uk) = 0.650

acceleration due to gravity (g) = 9.8 m/s^{2}

apply the equation below

change in kinetic energy = net work done

final kinetic energy(K₂) - final kinetic energy(K₁) = Uk x force(F) x distance(s)

final kinetic energy is zero because the clay and the wood comes to a stop

kinetic energy = 0.5 x m x v^{2} and

force = m x g so the equation now becomes

0.5 x m x v^{2} = Uk x m x g x s

0.5 x 0.099 x v^{2} = 0.650 x 0.099 x 9.8 x 7.5

V = 9.78 m/s

from the conservation of momentum

M₁ V₁ + M₂ V₂ = (M₁ + M₂ ) V

V₂  is zero since the block is initially at rest, so our equation becomes

M₁ V₁ = (M₁ + M₂ ) V

0.009 x V₁ = 0.099 x 9.78

V₁ = 107.58 m/s

the speed of the clay before impact is 107.58 m/s

You might be interested in
A spring hangs at rest from a support. If you suspend a 0.46 kg mass from the spring it elongates 0.79m.
Fudgin [204]

a. The restoring force in the spring has magnitude

F[spring] = k (0.79 m)

which counters the weight of the mass,

F[weight] = (0.46 kg) g = 4.508 N

so that by Newton's second law,

F[spring] - F[weight] = 0   ⇒   k = (4.508 N) / (0.79 m) ≈ 5.7 N/m

b. Using the same equation as before, we now have

F[weight] = (0.75 kg) g = 7.35 N

so that

(5.7 N/m) x - 7.35 N = 0   ⇒   x = (7.35 N) / (5.7 N/m) ≈ 1.3 m

4 0
2 years ago
Calculate the density of a substance whose mass is 160,000kg and volume 20m
Semmy [17]
I’m assuming that’s m^3? If so then simply divide 160,000 by 20 and you get the answer.

8,000 kg/m^3
3 0
2 years ago
An object with mass 100 kg moved in outer space. When it was at location <8, -30, -4> its speed was 5.5 m/s. A single cons
Alenkasestr [34]

Answer:

v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

Explanation:

We can solve this problem using the kinematic relations, we have a three-dimensional movement, but we can work as three one-dimensional movements where the only parameter in common is time (a scalar).

X axis.

They indicate the initial position x = 8 m, its initial velocity v₀ = 5.5 m / s, the force Fx₁ = 220 N x₁ = 14 m, now the force changes to Fx₂ = 100 N up to the point xf = 17 m. The final speed is wondered.

As this movement is in three dimensions we must find the projection of the initial velocity in each axis, for this we can use trigonometry

the angle fi is with respect to the in z and the angle theta with respect to the x axis.

               sin φ = z / r

                Cos φ = r_p / r

               z = r sin φ

               r_p = r cos φ

the modulus of the vector r can be found with the Pythagorean theorem

               r² = (x-x₀) ² + (y-y₀) ² + (z-z₀) ²

               r² = (14-8) 2 + (-21 + 30) 2+ (-7 +4) 2

               r = √126

               r = 11.23 m

Let's find the angle with respect to the z axis (φfi)

                φ = sin⁻¹ z / r

                φ = sin⁻¹ ( \frac{-7+4}{11.23} )

                φ = 15.5º

Let's find the projection of the position vector (r_p)

                r_p = r cos φ

                r_p = 11.23 cos 15.5

                r_p = 10.82 m

This vector is in the xy plane, so we can use trigonometry to find the angle with respect to the x axis.

                 cos θ = x / r_p

                 θ = cos⁻¹ x / r_p

                 θ = cos⁻¹ ( \frac{14-8}{10.82})  

                 θ = 56.3º

taking the angles we can decompose the initial velocity.

               sin φ = v_z / v₀

               cos φ = v_p / v₀

               v_z = v₀ sin φ

               v_z = 5.5 sin 15.5 = 1.47 m / z

               v_p = vo cos φ

               v_p = 5.5 cos 15.5 = 5.30 m / s

                 

               cos θ = vₓ / v_p

                sin θ = v_y / v_p

                vₓ = v_p cos θ

                v_y = v_p sin θ

                vₓ = 5.30 cos 56.3 = 2.94 m / s

                v_y = 5.30 sin 56.3 = 4.41 m / s

 

                 

we already have the components of the initial velocity

                v₀ = (2.94 i ^ + 4.41 j ^ + 1.47 k ^) m / s

let's find the acceleration on this axis (ax1) using Newton's second law

                Fₓx = m aₓ₁

                aₓ₁ = Fₓ / m

                aₓ₁ = 220/100

                aₓ₁ = 2.20 m / s²

Let's look for the velocity at the end of this interval (vx1)

Let's be careful if the initial velocity and they relate it has the same sense it must be added, but if the velocity and acceleration have the opposite direction it must be subtracted.

                 vₓ₁² = v₀ₓ² + 2 aₓ₁ (x₁-x₀)

                 

let's calculate

                 vₓ₁² = 2.94² + 2 2.20 (14-8)

                 vₓ₁ = √35.04

                 vₓ₁ = 5.92 m / s

to the second interval

they relate it to xf

                   aₓ₂ = Fₓ₂ / m

                   aₓ₂ = 100/100

                   aₓ₂ = 1 m / s²

final speed

                    v_{xf}²  = vₓ₁² + 2 aₓ₂ (x_f- x₁)

                    v_{xf}² = 5.92² + 2 1 (17-14)

                    v_{xf} =√41.05

                    v_{xf} = 6.41 m / s

We carry out the same calculation for each of the other axes.

Axis y

acceleration (a_{y1})

                      a_{y1} = F_y / m

                      a_{y1} = 460/100

                      a_[y1} = 4.60 m / s²

the velocity at the end of the interval (v_{y1})

                      v_{y1}² = v_{oy}² + 2 a_{y1{ (y₁ -y₀)

                      v_{y1}2 = 4.41² + 2 4.60 (-21 + 30)

                      v_{y1} = √102.25

                       v_{y1} = 10.11 m / s

second interval

acceleration (a_{y2})

                      a_{y2} = F_{y2} / m

                      a_{y2} = 260/100

                      a_{y2} = 2.60 m / s2

final speed

                     v_{yf}² = v_{y1}² + 2 a_{y2} (y₂ -y₁)

                     v_{yf}² = 10.11² + 2 2.60 (-27 + 21)

                      v_{yf} = √ 71.01

                      v_{yf} = 8.43 m / s

here there is an inconsistency in the problem if the body is at y₁ = -27m and passes the position y_f = -21 m with the relationship it must be contrary to the velocity

z axis

 

first interval, relate (a_{z1})

                      a_{z1} = F_{z1} / m

                      a_{z1} = -200/100

                      a_{z1} = -2 m / s

the negative sign indicates that the acceleration is the negative direction of the z axis

the speed at the end of the interval

                    v_{z1}² = v_{zo)² + 2 a_{z1} (z₁-z₀)

                    v_{z1}² = 1.47² + 2 (-2) (-7 + 4)

                    v_{z1} = √14.16

                    v_{z1} = -3.76 m / s

second interval, acceleration (a_{z2})

                    a_{z2} = F_{z2} / m

                    a_{z2} = 210/100

                    a_{z2} = 2.10 m / s2

final speed

                    v_{fz}² = v_{z1}² - 2 a_{z2} | z_f-z₁)

                    v_{fz}² = 3.14² - 2 2.10 (-3 + 7)

                     v_{fz} = √6.94

                     v_{fz} = 2.63 m / s

speed is     v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

5 0
3 years ago
cheAt an amusement park, a swimmer uses a water slide to enter the main pool. If the swimmer starts at rest, slides without fric
KiRa [710]

Answer:

v \approx 7.371\,\frac{m}{s}

Explanation:

The swimmer can be modelled by the Principle of Energy Conservation. The speed is derived herein:

m_{swimmer}\cdot g \cdot h = \frac{1}{2}\cdot m_{swimmer}\cdot v^{2}

v = \sqrt{2\cdot g \cdot h}

v = \sqrt{2\cdot (9.807\,\frac{m}{s^{2}} )\cdot (2.77\,m)}

v \approx 7.371\,\frac{m}{s}

3 0
3 years ago
If you carry out an experiment measuring the weight and mass of objects in one particular location on the earth, what relation w
olga_2 [115]
<span>D. Mass equals weight times acceleration due to gravity.


choose

</span>
5 0
3 years ago
Other questions:
  • A stone is thrown upward at an angle. what happens to the horizontal component of its velocity as it rises? as it falls?
    13·1 answer
  • A mass of 1.5 kg is attached to a spring and placed on a horizontal surface. The spring has a spring constant of 120 N/m, and th
    13·2 answers
  • A cyclist is riding a bicycle at a speed of 22 mph on a horizontal road. The distance between the axles is 42 in., and the mass
    6·1 answer
  • Paragraph about how the constellations were used by ancient civilizations.
    7·1 answer
  • How can you best identify quackery in a health service provider?
    10·1 answer
  • A force of 45 N is applied tangentially to the rim of a solid disk of radius 0.12 m. The disk rotates about an axis through its
    6·1 answer
  • a ball is thrown straight up with an initial speed 40m/s.a) how high does it go? b) what will be its velocity be in 7 secs?c) ho
    7·1 answer
  • Which factor does not affect the resistance of a material?
    8·2 answers
  • How are Newton's 3 laws related?
    14·1 answer
  • Which type of motion occur in a lift in one word<br>Pls answer​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!