Answer:
0.719M AgNO₃
Explanation:
Based on the reaction:
MgBr₂ + 2AgNO₃ ⇄ 2AgBr + Mg(NO₃)₂
<em>1 mole of magnesium bromide reacts completely with 2 moles of AgNO₃</em>
<em />
To find molarity of AgNO₃ solution we need to determine moles of AgNO₃ and, as molarity is the ratio of moles over liter (13.9mL = 0.0139L). Now, to determine moles of AgNO₃ we need to use the reaction, thus:
<em>Moles AgNO₃:</em>
<em />
Moles of MgBr₂ are:
50.0mL = 0.050L * (0.100mol / L) = 0.00500 moles of MgBr₂.
As the silver nitrate reacts completely and 2 moles of AgNO₃ reacts per mole of MgBr₂:
0.00500 moles MgBr₂ * (2 moles AgNO₃ / 1 mole MgBr₂) =
0.0100 moles of AgNO₃ are in the solution.
And molarity is:
0.0100 moles AgNO₃ / 0.0139L =
<h3>0.719M AgNO₃</h3>
Answer:
D.) Products are weakly favored
Explanation:
For the reaction:
2SO₃ ⇄ O₂ + 2SO₂ + 198kJ/mol
The kc is defined as:
kc = [O₂] [SO₂]² / [SO₃]²
As the kc is 8,1:
8,1 [SO₃]² = [O₂] [SO₂]²
The products are favored 8,1 times. This is a weakly favored because the usual kc are in the order of 1x10⁴. Thus, right answer is:
D.) Products are weakly favored
I hope it helps!
It's called Ice Wedging :)
Answer:More of the radioactivity is lost during the first half-life than in later half-lives.
Explanation: Passed test with 98