Discriminant D is given by:
D=b²-4ac
Implication of discriminant is as follows:
D<0 two zeros that are complex conjugate
D=0 one real zero of multiplicity 2
D>0 two distinct real zers
D= (+ve perfet square) two distinct rational zeros
From:
12x^2+10x+5=0
plugging in the equation we get:
10²-4×12×5
=100-240
=-140
thus
D<0
Answer is:
<span>A two irrational solutions </span>
Answer:
-4, -6, -3, -5, -1. The inequality solved for n is n ≥ -6.
Step-by-step explanation:
Substitute all the values in the equation.
n/2 ≥ -3
-10/2 ≥ -3
-5 is not ≥ -3.
n/2 ≥ -3
-7/2 ≥ -3
-3.5 is not ≥ -3.
n/2 ≥ -3
-4/2 ≥ -3
-2 is ≥ -3.
n/2 ≥ -3
-9/2 ≥ -3
-4.5 is not ≥ -3.
n/2 ≥ -3
-6/2 ≥ -3
-3 is ≥ -3.
n/2 ≥ -3
-3/2 ≥ -3
-1.5 is ≥ -3.
n/2 ≥ -3
-8/2 ≥ -3
-4 is not ≥ -3.
n/2 ≥ -3
-5/2 ≥ -3
-2.5 is ≥ -3.
n/2 ≥ -3
-2/2 ≥ -3
-1 is ≥ -3.
To solve the inequality n/2 ≥ -3 for n, do these steps.
n/2 ≥ -3
Multiply by 2.
n ≥ -6.
Answer:
6
(x−7)(x−1) this is the correct answer