Answer:
y = 3x - 5
Step-by-step explanation:
We know that the equation 'y = 3x + ?' intersects the point (1, -2). This means that when x = 1, y = -2 in out equation above. To solve this just plug in the x and y values to get '?'.

Now that we know '?' is -5, we write it back into slope intercept form, so our final answer is y = 3x - 5
Answer:
50x50=1000000
Step-by-step explanation:
2.8.1

By definition of the derivative,

We have

and

Combine these fractions into one with a common denominator:

Rationalize the numerator by multiplying uniformly by the conjugate of the numerator, and simplify the result:

Now divide this by <em>h</em> and take the limit as <em>h</em> approaches 0 :

3.1.1.
![f(x) = 4x^5 - \dfrac1{4x^2} + \sqrt[3]{x} - \pi^2 + 10e^3](https://tex.z-dn.net/?f=f%28x%29%20%3D%204x%5E5%20-%20%5Cdfrac1%7B4x%5E2%7D%20%2B%20%5Csqrt%5B3%5D%7Bx%7D%20-%20%5Cpi%5E2%20%2B%2010e%5E3)
Differentiate one term at a time:
• power rule


![\left(\sqrt[3]{x}\right)' = \left(x^{1/3}\right)' = \dfrac13 x^{-2/3} = \dfrac1{3x^{2/3}}](https://tex.z-dn.net/?f=%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%27%20%3D%20%5Cleft%28x%5E%7B1%2F3%7D%5Cright%29%27%20%3D%20%5Cdfrac13%20x%5E%7B-2%2F3%7D%20%3D%20%5Cdfrac1%7B3x%5E%7B2%2F3%7D%7D)
The last two terms are constant, so their derivatives are both zero.
So you end up with

Answer:
The co-ordinates of the vertex of the function y-9= -6(x-1)^2 is (1, 9)
<u>Solution:</u>
Given, equation is 
We have to find the vertex of the given equation.
When we observe the equation, it is a parabolic equation,
We know that, general form of a parabolic equation is
Where, h and k are x, y co ordinates of the vertex of the parabola.

By comparing the above equation with general form of the parabola, we can conclude that,
a = -6, h = 1 and k = 9
Hence, the vertex of the parabola is (1, 9).
How did you get to put a picture